
The solar constant is defined as the energy incident per unit area per second. The dimensional formula for solar constant is:
$
{\text{(A) [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{\text{]}} \\
{\text{(B) [ML}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}} \\
{\text{(C) [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}} \\
{\text{(D) [M}}{{\text{L}}^{\text{0}}}{{\text{T}}^{{\text{ - 3}}}}{\text{]}} \\
$
Answer
180k+ views
Hint: For finding the dimensional formula of any quantity first of all write the formula related to that quantity. Here the solar constant is defined as the energy incident per unit area per second. Write the dimensional formula of the power and the dimensional formula of area and then simplify to get the dimensional formula of solar constant.
Complete solution:
Solar constant is defined as the total radiation energy received from the Sun per unit of time per unit of area.
Units of solar constant ${\text{ = }}\dfrac{{{\text{power}}}}{{{\text{area}}}}$
The S.I. unit of power is watt (represented by W)
S.I. unit of area is metre square (represented by ${{\text{m}}^{\text{2}}}$)
Thus, the S.I. units of solar constant ${\text{ = }}\dfrac{{\text{W}}}{{{{\text{m}}^{\text{2}}}}}$
A body is said to have power of ${\text{1 Watt}}$ if the body does work of ${\text{1 Joule}}$ in ${\text{1 second}}$.
So, ${\text{1 Watt = }}\dfrac{{{\text{1 joule}}}}{{{\text{1 sec}}}}$
Also, One joule of work is done on an object when a force of one newton (represented by ${\text{1 N}}$) is applied over a distance of one meter (represented by ${\text{1 m}}$).
So, ${\text{1 joule = }}\dfrac{{{\text{1 newton}}}}{{{\text{1 metre}}}}$
Thus, the S.I. units of solar constant is $\dfrac{{{\text{N m}}}}{{{\text{s }}{{\text{m}}^2}}}$.
Now the dimensional formula of force whose S.I. unit is newton is given by ${\text{[ML}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$
Dimensional formula of distance whose S.I. unit is metre is given by ${\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{\text{0}}}{\text{]}}$
Dimensional formula of time whose S.I. units is second is given by ${\text{[ML}}{{\text{T}}^1}{\text{]}}$
Thus, dimensional formula of solar constant is $\dfrac{{{\text{[}}{{\text{M}}^1}{{\text{L}}^1}{{\text{T}}^{{\text{ - 2}}}}{\text{][L]}}}}{{{\text{[}}{{\text{T}}^1}{\text{][}}{{\text{L}}^{\text{2}}}{\text{]}}}}{\text{ = [}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^{{\text{ - 3}}}}{\text{]}}$
The dimensional formula for solar constant is ${\text{[}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^{{\text{ - 3}}}}{\text{]}}$
Therefore, option (C) is the correct choice.
Note: Dimensions are denoted with square brackets. The dimensional formula of length, mass, time, electric current, thermodynamic temperature, luminous intensity and amount of substance are [L], [M], [A], [K], [Cd] and [mol] respectively. These are the quantities from which all other secondary quantities can be obtained.
Complete solution:
Solar constant is defined as the total radiation energy received from the Sun per unit of time per unit of area.
Units of solar constant ${\text{ = }}\dfrac{{{\text{power}}}}{{{\text{area}}}}$
The S.I. unit of power is watt (represented by W)
S.I. unit of area is metre square (represented by ${{\text{m}}^{\text{2}}}$)
Thus, the S.I. units of solar constant ${\text{ = }}\dfrac{{\text{W}}}{{{{\text{m}}^{\text{2}}}}}$
A body is said to have power of ${\text{1 Watt}}$ if the body does work of ${\text{1 Joule}}$ in ${\text{1 second}}$.
So, ${\text{1 Watt = }}\dfrac{{{\text{1 joule}}}}{{{\text{1 sec}}}}$
Also, One joule of work is done on an object when a force of one newton (represented by ${\text{1 N}}$) is applied over a distance of one meter (represented by ${\text{1 m}}$).
So, ${\text{1 joule = }}\dfrac{{{\text{1 newton}}}}{{{\text{1 metre}}}}$
Thus, the S.I. units of solar constant is $\dfrac{{{\text{N m}}}}{{{\text{s }}{{\text{m}}^2}}}$.
Now the dimensional formula of force whose S.I. unit is newton is given by ${\text{[ML}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$
Dimensional formula of distance whose S.I. unit is metre is given by ${\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{\text{0}}}{\text{]}}$
Dimensional formula of time whose S.I. units is second is given by ${\text{[ML}}{{\text{T}}^1}{\text{]}}$
Thus, dimensional formula of solar constant is $\dfrac{{{\text{[}}{{\text{M}}^1}{{\text{L}}^1}{{\text{T}}^{{\text{ - 2}}}}{\text{][L]}}}}{{{\text{[}}{{\text{T}}^1}{\text{][}}{{\text{L}}^{\text{2}}}{\text{]}}}}{\text{ = [}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^{{\text{ - 3}}}}{\text{]}}$
The dimensional formula for solar constant is ${\text{[}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^{{\text{ - 3}}}}{\text{]}}$
Therefore, option (C) is the correct choice.
Note: Dimensions are denoted with square brackets. The dimensional formula of length, mass, time, electric current, thermodynamic temperature, luminous intensity and amount of substance are [L], [M], [A], [K], [Cd] and [mol] respectively. These are the quantities from which all other secondary quantities can be obtained.
Recently Updated Pages
Learn Conversion of Galvanometer into Ammeter and Voltmeter for JEE Main

JEE Main Chemistry Question Paper PDF Download with Answer Key

Electric Field Due To Uniformly Charged Ring - JEE Main 2025

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

What is Hybridisation in Chemistry?

Other Pages
NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solutions For Class 11 Physics Chapter 3 Motion In A Plane - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26
