
The rate of change of torque τ with deflection θ is maximum for a magnet suspended freely in a uniform magnetic field of induction B when θ is equal to
A . 0°
B . 45°
C . 60°
D . 90°
Answer
162.3k+ views
Hint:In this question we have to find the θ at which the rate of change of torque with deflection is maximum. Therefore, we have to make $\dfrac{d\tau }{d\theta }$ maximum.
Formula used:
Torque τ= M×B (the cross product of magnetic moment and magnetic field)
Complete answer:
We know that for a magnet suspended freely in a uniform magnetic field, the torque is the cross product of the magnetic moment and the magnetic field.
τ= M×B
τ= MBsinθ (θ=angle between M and B)
The rate of change of torque τ with deflection θ=$\dfrac{d\tau }{d\theta }$
$\dfrac{d\tau }{d\theta }=\dfrac{d(MB\sin \theta )}{d\theta }$
$\dfrac{d\tau }{d\theta }=MB\cos \theta $
For $\dfrac{d\tau }{d\theta }$ to be maximum, MBcosθ should be maximum, that is cosθ should be maximum since we cannot change the magnetic moment or the magnetic field.
The maximum value of cosθ is 1 which happens when θ=0°.
Therefore, the rate of change of torque with deflection is maximum when vector M and vector B are parallel to each other.
The correct answer is 0°.
Note:The differentiation of sin θ with respect to θ gives cosθ with a positive sign. If we have to find the rate of change of something, we always take help of differentiation.
Formula used:
Torque τ= M×B (the cross product of magnetic moment and magnetic field)
Complete answer:
We know that for a magnet suspended freely in a uniform magnetic field, the torque is the cross product of the magnetic moment and the magnetic field.
τ= M×B
τ= MBsinθ (θ=angle between M and B)
The rate of change of torque τ with deflection θ=$\dfrac{d\tau }{d\theta }$
$\dfrac{d\tau }{d\theta }=\dfrac{d(MB\sin \theta )}{d\theta }$
$\dfrac{d\tau }{d\theta }=MB\cos \theta $
For $\dfrac{d\tau }{d\theta }$ to be maximum, MBcosθ should be maximum, that is cosθ should be maximum since we cannot change the magnetic moment or the magnetic field.
The maximum value of cosθ is 1 which happens when θ=0°.
Therefore, the rate of change of torque with deflection is maximum when vector M and vector B are parallel to each other.
The correct answer is 0°.
Note:The differentiation of sin θ with respect to θ gives cosθ with a positive sign. If we have to find the rate of change of something, we always take help of differentiation.
Recently Updated Pages
How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

JEE Main 2023 (January 30th Shift 2) Chemistry Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Charging and Discharging of Capacitor

Wheatstone Bridge for JEE Main Physics 2025

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

In which of the following forms the energy is stored class 12 physics JEE_Main
