
The position vectors of two points P and Q are \[3i + j + 2k\]and \[i - 2j - 4k\;\] respectively. The equation of the plane through Q and perpendicular to PQ is
A) \[r.(2i + 3j + 6k) = 28\]
B) \[\;\;r.(2i + 3j + 6k) = 32\]
C) \[\;r.(2i + 3j + 6k) + 28 = 0\]
D) None of these
Answer
190.5k+ views
Hint: in this question, we have to find the equation of a plane passing through a given point and perpendicular to a given line. First, find the equation of line which is equal to the difference of position vectors of given points. Then use the standard equation of plane in order to find the equation of required plane.
Formula Used:Equation of required plane is given by
\[(\overrightarrow r - \overrightarrow a ).\overrightarrow n = 0\]
Where
\[\overrightarrow r \]Is a position vector of any arbitrary point.
\[\overrightarrow n \]normal vector to the plane .
Formula for position vector is given by
\[\overrightarrow {AB} = Position{\rm{ }}vector{\rm{ }}of{\rm{ }}B{\rm{ }}-{\rm{ }}position{\rm{ }}vector{\rm{ }}of{\rm{ }}A\]
Complete step by step solution:Equation of line which is perpendicular to required plane is given by
\[\overrightarrow {AB} = Position{\rm{ }}vector{\rm{ }}of{\rm{ }}B{\rm{ }}-{\rm{ }}position{\rm{ }}vector{\rm{ }}of{\rm{ }}A\]
\[\overrightarrow P = 3i + j + 2k\]
\[\overrightarrow Q = i - 2j - 4k\;\]
\[\overrightarrow {PQ} = (i - 2j - 4k\;) - (3i + j + 2k)\]
\[\overrightarrow {PQ} = - 2i - 3j - 6k\]
This is an equation of line which is perpendicular to required plane
\[\overrightarrow n = \overrightarrow {PQ} = - 2i - 3j - 6k\]
Plane is passing through point \[i - 2j - 4k\;\]
\[\overrightarrow a = i - 2j - 4k\;\]
Now equation of required plane is given by
\[(\overrightarrow r - \overrightarrow a ).\overrightarrow n = 0\]
Where
\[\overrightarrow r \]Is a position vector of any arbitrary point.
\[\overrightarrow n \]normal vector to the plane .
Now putting value of a and n in equation \[(\overrightarrow r - \overrightarrow a ).\overrightarrow n = 0\]
We get
\[(\overrightarrow r - (i - 2j - 4k)\;).( - 2i - 3j - 6k) = 0\]
\[(\overrightarrow r \;).( - 2i - 3j - 6k) - ( - (i - 2j - 4k))( - 2i - 3j - 6k) = 0\]
On rearranging we get
\[ - \overrightarrow r .(2i + 3j + 6k) - (i - 2j - 4k).(2i + 3j + 6k) = 0\]
\[\overrightarrow r .(2i + 3j + 6k) - (2 - 6 - 24) = 0\]
\[\overrightarrow r .(2i + 3j + 6k) - ( - 28) = 0\]
Now the equation of require plane is
\[\overrightarrow r .(2i + 3j + 6k) + 28 = 0\]
Option ‘C’ is correct
Note: Here we need to remember that; vector PQ is an equation of line which is perpendicular to the required plane. Position vector is a vector which give position of a point with respect to an origin.
Formula Used:Equation of required plane is given by
\[(\overrightarrow r - \overrightarrow a ).\overrightarrow n = 0\]
Where
\[\overrightarrow r \]Is a position vector of any arbitrary point.
\[\overrightarrow n \]normal vector to the plane .
Formula for position vector is given by
\[\overrightarrow {AB} = Position{\rm{ }}vector{\rm{ }}of{\rm{ }}B{\rm{ }}-{\rm{ }}position{\rm{ }}vector{\rm{ }}of{\rm{ }}A\]
Complete step by step solution:Equation of line which is perpendicular to required plane is given by
\[\overrightarrow {AB} = Position{\rm{ }}vector{\rm{ }}of{\rm{ }}B{\rm{ }}-{\rm{ }}position{\rm{ }}vector{\rm{ }}of{\rm{ }}A\]
\[\overrightarrow P = 3i + j + 2k\]
\[\overrightarrow Q = i - 2j - 4k\;\]
\[\overrightarrow {PQ} = (i - 2j - 4k\;) - (3i + j + 2k)\]
\[\overrightarrow {PQ} = - 2i - 3j - 6k\]
This is an equation of line which is perpendicular to required plane
\[\overrightarrow n = \overrightarrow {PQ} = - 2i - 3j - 6k\]
Plane is passing through point \[i - 2j - 4k\;\]
\[\overrightarrow a = i - 2j - 4k\;\]
Now equation of required plane is given by
\[(\overrightarrow r - \overrightarrow a ).\overrightarrow n = 0\]
Where
\[\overrightarrow r \]Is a position vector of any arbitrary point.
\[\overrightarrow n \]normal vector to the plane .
Now putting value of a and n in equation \[(\overrightarrow r - \overrightarrow a ).\overrightarrow n = 0\]
We get
\[(\overrightarrow r - (i - 2j - 4k)\;).( - 2i - 3j - 6k) = 0\]
\[(\overrightarrow r \;).( - 2i - 3j - 6k) - ( - (i - 2j - 4k))( - 2i - 3j - 6k) = 0\]
On rearranging we get
\[ - \overrightarrow r .(2i + 3j + 6k) - (i - 2j - 4k).(2i + 3j + 6k) = 0\]
\[\overrightarrow r .(2i + 3j + 6k) - (2 - 6 - 24) = 0\]
\[\overrightarrow r .(2i + 3j + 6k) - ( - 28) = 0\]
Now the equation of require plane is
\[\overrightarrow r .(2i + 3j + 6k) + 28 = 0\]
Option ‘C’ is correct
Note: Here we need to remember that; vector PQ is an equation of line which is perpendicular to the required plane. Position vector is a vector which give position of a point with respect to an origin.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2026

Carbon Dioxide Formula - Definition, Uses and FAQs

Absolute Pressure Formula - Explanation, and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Difference Between Solute and Solvent: JEE Main 2026

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Equation of Trajectory in Projectile Motion: Derivation & Proof

Atomic Structure: Definition, Models, and Examples

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Collision: Meaning, Types & Examples in Physics

Other Pages
NCERT Solutions For Class 11 Maths Chapter 4 Complex Numbers And Quadratic Equations - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 6 Permutations And Combinations - 2025-26

NCERT Solutions For Class 11 Maths Chapter 5 Linear Inequalities - 2025-26

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series - 2025-26

NCERT Solutions For Class 11 Maths Chapter 7 Binomial Theorem - 2025-26
