
The position vectors of two points P and Q are \[3i + j + 2k\]and \[i - 2j - 4k\;\] respectively. The equation of the plane through Q and perpendicular to PQ is
A) \[r.(2i + 3j + 6k) = 28\]
B) \[\;\;r.(2i + 3j + 6k) = 32\]
C) \[\;r.(2i + 3j + 6k) + 28 = 0\]
D) None of these
Answer
222.3k+ views
Hint: in this question, we have to find the equation of a plane passing through a given point and perpendicular to a given line. First, find the equation of line which is equal to the difference of position vectors of given points. Then use the standard equation of plane in order to find the equation of required plane.
Formula Used:Equation of required plane is given by
\[(\overrightarrow r - \overrightarrow a ).\overrightarrow n = 0\]
Where
\[\overrightarrow r \]Is a position vector of any arbitrary point.
\[\overrightarrow n \]normal vector to the plane .
Formula for position vector is given by
\[\overrightarrow {AB} = Position{\rm{ }}vector{\rm{ }}of{\rm{ }}B{\rm{ }}-{\rm{ }}position{\rm{ }}vector{\rm{ }}of{\rm{ }}A\]
Complete step by step solution:Equation of line which is perpendicular to required plane is given by
\[\overrightarrow {AB} = Position{\rm{ }}vector{\rm{ }}of{\rm{ }}B{\rm{ }}-{\rm{ }}position{\rm{ }}vector{\rm{ }}of{\rm{ }}A\]
\[\overrightarrow P = 3i + j + 2k\]
\[\overrightarrow Q = i - 2j - 4k\;\]
\[\overrightarrow {PQ} = (i - 2j - 4k\;) - (3i + j + 2k)\]
\[\overrightarrow {PQ} = - 2i - 3j - 6k\]
This is an equation of line which is perpendicular to required plane
\[\overrightarrow n = \overrightarrow {PQ} = - 2i - 3j - 6k\]
Plane is passing through point \[i - 2j - 4k\;\]
\[\overrightarrow a = i - 2j - 4k\;\]
Now equation of required plane is given by
\[(\overrightarrow r - \overrightarrow a ).\overrightarrow n = 0\]
Where
\[\overrightarrow r \]Is a position vector of any arbitrary point.
\[\overrightarrow n \]normal vector to the plane .
Now putting value of a and n in equation \[(\overrightarrow r - \overrightarrow a ).\overrightarrow n = 0\]
We get
\[(\overrightarrow r - (i - 2j - 4k)\;).( - 2i - 3j - 6k) = 0\]
\[(\overrightarrow r \;).( - 2i - 3j - 6k) - ( - (i - 2j - 4k))( - 2i - 3j - 6k) = 0\]
On rearranging we get
\[ - \overrightarrow r .(2i + 3j + 6k) - (i - 2j - 4k).(2i + 3j + 6k) = 0\]
\[\overrightarrow r .(2i + 3j + 6k) - (2 - 6 - 24) = 0\]
\[\overrightarrow r .(2i + 3j + 6k) - ( - 28) = 0\]
Now the equation of require plane is
\[\overrightarrow r .(2i + 3j + 6k) + 28 = 0\]
Option ‘C’ is correct
Note: Here we need to remember that; vector PQ is an equation of line which is perpendicular to the required plane. Position vector is a vector which give position of a point with respect to an origin.
Formula Used:Equation of required plane is given by
\[(\overrightarrow r - \overrightarrow a ).\overrightarrow n = 0\]
Where
\[\overrightarrow r \]Is a position vector of any arbitrary point.
\[\overrightarrow n \]normal vector to the plane .
Formula for position vector is given by
\[\overrightarrow {AB} = Position{\rm{ }}vector{\rm{ }}of{\rm{ }}B{\rm{ }}-{\rm{ }}position{\rm{ }}vector{\rm{ }}of{\rm{ }}A\]
Complete step by step solution:Equation of line which is perpendicular to required plane is given by
\[\overrightarrow {AB} = Position{\rm{ }}vector{\rm{ }}of{\rm{ }}B{\rm{ }}-{\rm{ }}position{\rm{ }}vector{\rm{ }}of{\rm{ }}A\]
\[\overrightarrow P = 3i + j + 2k\]
\[\overrightarrow Q = i - 2j - 4k\;\]
\[\overrightarrow {PQ} = (i - 2j - 4k\;) - (3i + j + 2k)\]
\[\overrightarrow {PQ} = - 2i - 3j - 6k\]
This is an equation of line which is perpendicular to required plane
\[\overrightarrow n = \overrightarrow {PQ} = - 2i - 3j - 6k\]
Plane is passing through point \[i - 2j - 4k\;\]
\[\overrightarrow a = i - 2j - 4k\;\]
Now equation of required plane is given by
\[(\overrightarrow r - \overrightarrow a ).\overrightarrow n = 0\]
Where
\[\overrightarrow r \]Is a position vector of any arbitrary point.
\[\overrightarrow n \]normal vector to the plane .
Now putting value of a and n in equation \[(\overrightarrow r - \overrightarrow a ).\overrightarrow n = 0\]
We get
\[(\overrightarrow r - (i - 2j - 4k)\;).( - 2i - 3j - 6k) = 0\]
\[(\overrightarrow r \;).( - 2i - 3j - 6k) - ( - (i - 2j - 4k))( - 2i - 3j - 6k) = 0\]
On rearranging we get
\[ - \overrightarrow r .(2i + 3j + 6k) - (i - 2j - 4k).(2i + 3j + 6k) = 0\]
\[\overrightarrow r .(2i + 3j + 6k) - (2 - 6 - 24) = 0\]
\[\overrightarrow r .(2i + 3j + 6k) - ( - 28) = 0\]
Now the equation of require plane is
\[\overrightarrow r .(2i + 3j + 6k) + 28 = 0\]
Option ‘C’ is correct
Note: Here we need to remember that; vector PQ is an equation of line which is perpendicular to the required plane. Position vector is a vector which give position of a point with respect to an origin.
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Conduction Explained: Definition, Examples & Science for Students

Balancing of Redox Reactions - Important Concepts and Tips for JEE

Atomic Size - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

