
The period of oscillation of a vibration magnetometer depends on which of the following factors
A. \[I\] and \[M\] only
B. \[M\] and \[H\] only
C. \[I\] and \[H\] only
D. \[I,M\] and \[H\] only
Answer
165.3k+ views
Hint: Magnetic field strength and magnetic field intensity are other names for the same phenomenon. And the oscillation period refers to the length of time that it takes a particle to complete an one oscillation.
Formula used:
The time period of bar magnet is given by,
\[T = 2\pi \sqrt {\dfrac{I}{{MH}}} \]
Here, \[T\] is time period of oscillation of bar magnet, \[I\] is moment of inertia of the magnet about the axis of suspension, \[M\] is magnetic moment and \[H\] is magnetic field intensity of bar magnet or the external magnetic field.
Complete step by step solution:
In order for the model to be true, the net force exerted on the object at the pendulum's end must be commensurate to the displacement. As we know, the motion of a simple pendulum may be described by the basic harmonic motion and simple harmonic motion can also be used to describe molecular vibration.
The time period of bar magnet is given by,
\[T = 2\pi \sqrt {\dfrac{I}{{MH}}} \]
As a result, \[I,M\] and \[H\] only affects the vibration magnetometer's oscillation period.
Thus, the correct option is D.
Note: The magnetic field strength or magnetic field intensity is the ratio of the magnetomotive force necessary to create flux density per unit length of a particular material. The magnetic field of the planet is formed deep beneath the earth's core by the magnet's moment of inertia, which has a direct link with the oscillation period. The movement of liquid iron creates magnetic fields, which causes the Earth's core to generate an electric current.
Formula used:
The time period of bar magnet is given by,
\[T = 2\pi \sqrt {\dfrac{I}{{MH}}} \]
Here, \[T\] is time period of oscillation of bar magnet, \[I\] is moment of inertia of the magnet about the axis of suspension, \[M\] is magnetic moment and \[H\] is magnetic field intensity of bar magnet or the external magnetic field.
Complete step by step solution:
In order for the model to be true, the net force exerted on the object at the pendulum's end must be commensurate to the displacement. As we know, the motion of a simple pendulum may be described by the basic harmonic motion and simple harmonic motion can also be used to describe molecular vibration.
The time period of bar magnet is given by,
\[T = 2\pi \sqrt {\dfrac{I}{{MH}}} \]
As a result, \[I,M\] and \[H\] only affects the vibration magnetometer's oscillation period.
Thus, the correct option is D.
Note: The magnetic field strength or magnetic field intensity is the ratio of the magnetomotive force necessary to create flux density per unit length of a particular material. The magnetic field of the planet is formed deep beneath the earth's core by the magnet's moment of inertia, which has a direct link with the oscillation period. The movement of liquid iron creates magnetic fields, which causes the Earth's core to generate an electric current.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Transistor as Amplifier: Working, Diagram, Uses & Questions

Moving Charges and Magnetism: Laws, Formulas & Applications

Environmental Chemistry Chapter for JEE Main Chemistry

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Uniform Acceleration

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Wheatstone Bridge for JEE Main Physics 2025
