
The orbital angular momentum of a p-electron is given as:
(a) \[\sqrt{3}\dfrac{h}{2\pi }\]
(b) \[\sqrt{\dfrac{3}{2}}\dfrac{h}{\pi }\]
(c) \[\sqrt{6}.\sqrt{\dfrac{h}{2\pi }}\]
(d) \[\dfrac{h}{\sqrt{2}\pi }\]
Answer
199.5k+ views
Hint: Bohr’s atomic model states many postulates for the arrangement of electrons in different orbits around the nucleus. According to one of his postulates, an electron can move around the nucleus in that circular orbital for which its angular momentum is an integral multiple of \[\dfrac{h}{2\pi }\].
Complete step by step answer:
According to the question, we need to find the angular momentum of a p-electron, i.e., this electron belongs to the p-orbital.
As we know, orbital angular momentum depends on ‘l’.
For p-orbital, the value of l = 1.
Formula of orbital angular momentum (m) is give as –
Orbital angular momentum = \[\sqrt{l(l+1)}\dfrac{h}{2\pi }\]
Since, l = 1.
Therefore,
Orbital angular momentum (m) = \[\sqrt{1(1+1)}\dfrac{h}{2\pi }\] = \[\sqrt{2}\dfrac{h}{2\pi }\]
On rationalization (i.e. multiplying numerator and denominator by\[\sqrt{2}\]), we get –
m =\[\dfrac{\sqrt{2}h}{2\pi }\times\dfrac{\sqrt{2}}{\sqrt{2}}\]
m =\[\dfrac{h}{\sqrt{2}\pi }\].
Therefore, the answer is – option (d) – The orbital angular momentum of a p-electron is given as \[\dfrac{h}{\sqrt{2}\pi }\].
Additional Information: The value of ‘l’ for different orbitals is as follows –
l = 0 for s-orbital
l = 1 for p-orbital
l = 2 for d-orbital
l = 3 for f-orbital
Note: The quantum number represents the complete address of an electron. There are four types of quantum numbers –
1. Principal quantum number (n)
- It tells about the size of the orbital, i.e. the average distance of an electron from the nucleus.
2. Azimuthal quantum number (l)
- It denotes the sub-level (orbital) to which the electron belongs.
- It ranges from 0 to (n-1).
3. Magnetic quantum number (m)
- It determines the preferred orientation of orbitals in space
- For each value of l, there are 2l+1 values of m.
4. Spin quantum number (s)
It tells about the direction of spin.
+1/2 represents clockwise spin.
-1/2 represents anti-clockwise spin.
Complete step by step answer:
According to the question, we need to find the angular momentum of a p-electron, i.e., this electron belongs to the p-orbital.
As we know, orbital angular momentum depends on ‘l’.
For p-orbital, the value of l = 1.
Formula of orbital angular momentum (m) is give as –
Orbital angular momentum = \[\sqrt{l(l+1)}\dfrac{h}{2\pi }\]
Since, l = 1.
Therefore,
Orbital angular momentum (m) = \[\sqrt{1(1+1)}\dfrac{h}{2\pi }\] = \[\sqrt{2}\dfrac{h}{2\pi }\]
On rationalization (i.e. multiplying numerator and denominator by\[\sqrt{2}\]), we get –
m =\[\dfrac{\sqrt{2}h}{2\pi }\times\dfrac{\sqrt{2}}{\sqrt{2}}\]
m =\[\dfrac{h}{\sqrt{2}\pi }\].
Therefore, the answer is – option (d) – The orbital angular momentum of a p-electron is given as \[\dfrac{h}{\sqrt{2}\pi }\].
Additional Information: The value of ‘l’ for different orbitals is as follows –
l = 0 for s-orbital
l = 1 for p-orbital
l = 2 for d-orbital
l = 3 for f-orbital
Note: The quantum number represents the complete address of an electron. There are four types of quantum numbers –
1. Principal quantum number (n)
- It tells about the size of the orbital, i.e. the average distance of an electron from the nucleus.
2. Azimuthal quantum number (l)
- It denotes the sub-level (orbital) to which the electron belongs.
- It ranges from 0 to (n-1).
3. Magnetic quantum number (m)
- It determines the preferred orientation of orbitals in space
- For each value of l, there are 2l+1 values of m.
4. Spin quantum number (s)
It tells about the direction of spin.
+1/2 represents clockwise spin.
-1/2 represents anti-clockwise spin.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Equation of Trajectory in Projectile Motion: Derivation & Proof

Atomic Structure: Definition, Models, and Examples

How to Convert a Galvanometer into an Ammeter or Voltmeter

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Collision: Meaning, Types & Examples in Physics

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

Electromagnetic Waves – Meaning, Types, Properties & Applications
