
The force between two current-carrying parallel wires has been used to define
A) Ampere
B) Coulomb
C) Volt
D) Watt
Answer
175.2k+ views
Hint: The force per unit length between two current-carrying wires depends on the product of the current flowing in the individual wires and inversely proportional to the distance between them. Ampere is the unit of current.
Formula used: In this solution, we will use the following formula:
Force per length between two current-carrying wires: $\dfrac{F}{l} = \dfrac{{2{\mu _0}{I_1}{I_2}}}{r}$ where ${I_1}\,{\text{and}}\,{I_2}$ are the current in the two wires, $r$ is the distance between them.
Complete step by step answer:
We know that the force per length between two current-carrying wires is given by:
$\dfrac{F}{l} = \dfrac{{2{\mu _0}{I_1}{I_2}}}{r}$
In this equation, for two given wires, we can calculate the force that acts between them and we can also measure the distance between the two wires experimentally. Then we can say that 1 Newton of force acts per unit length for two current-carrying wires that carry a current of 1 Ampere and are placed 1 metre apart.
Hence the force between two current-carrying parallel wires is used to define the units of Ampere.
So, option (A) is the correct choice.
Note: The force between two current-carrying wires depends on the direction of the currents in the two wires. If the currents flow in opposite directions, the force is attractive and if the current is in the same direction, the force is repulsive. One ampere of current corresponds to the value carried by two wires which when placed one metre apart will experience a force of 1 Newton between each other.
Formula used: In this solution, we will use the following formula:
Force per length between two current-carrying wires: $\dfrac{F}{l} = \dfrac{{2{\mu _0}{I_1}{I_2}}}{r}$ where ${I_1}\,{\text{and}}\,{I_2}$ are the current in the two wires, $r$ is the distance between them.
Complete step by step answer:
We know that the force per length between two current-carrying wires is given by:
$\dfrac{F}{l} = \dfrac{{2{\mu _0}{I_1}{I_2}}}{r}$
In this equation, for two given wires, we can calculate the force that acts between them and we can also measure the distance between the two wires experimentally. Then we can say that 1 Newton of force acts per unit length for two current-carrying wires that carry a current of 1 Ampere and are placed 1 metre apart.
Hence the force between two current-carrying parallel wires is used to define the units of Ampere.
So, option (A) is the correct choice.
Note: The force between two current-carrying wires depends on the direction of the currents in the two wires. If the currents flow in opposite directions, the force is attractive and if the current is in the same direction, the force is repulsive. One ampere of current corresponds to the value carried by two wires which when placed one metre apart will experience a force of 1 Newton between each other.
Recently Updated Pages
JEE Main 2025-26 Atoms and Nuclei Mock Test: Free Practice Online

JEE Main 2025-26: Dual Nature of Matter and Radiation Mock Test

JEE Main 2025-26 Electronic Devices Mock Test – Free Practice

JEE Main Mock Test 2025-26: Experimental Skills Chapter Online Practice

JEE Main 2025-26 Current Electricity Mock Test: Free Practice Online

JEE Main 2025-26 Rotational Motion Mock Test – Free Practice Online

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Electric field due to uniformly charged sphere class 12 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

What is Hybridisation in Chemistry?

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Essential Derivations for CBSE Class 12 Physics: Stepwise & PDF Solutions

Wheatstone Bridge for JEE Main Physics 2025
