
The force between two current-carrying parallel wires has been used to define
A) Ampere
B) Coulomb
C) Volt
D) Watt
Answer
232.8k+ views
Hint: The force per unit length between two current-carrying wires depends on the product of the current flowing in the individual wires and inversely proportional to the distance between them. Ampere is the unit of current.
Formula used: In this solution, we will use the following formula:
Force per length between two current-carrying wires: $\dfrac{F}{l} = \dfrac{{2{\mu _0}{I_1}{I_2}}}{r}$ where ${I_1}\,{\text{and}}\,{I_2}$ are the current in the two wires, $r$ is the distance between them.
Complete step by step answer:
We know that the force per length between two current-carrying wires is given by:
$\dfrac{F}{l} = \dfrac{{2{\mu _0}{I_1}{I_2}}}{r}$
In this equation, for two given wires, we can calculate the force that acts between them and we can also measure the distance between the two wires experimentally. Then we can say that 1 Newton of force acts per unit length for two current-carrying wires that carry a current of 1 Ampere and are placed 1 metre apart.
Hence the force between two current-carrying parallel wires is used to define the units of Ampere.
So, option (A) is the correct choice.
Note: The force between two current-carrying wires depends on the direction of the currents in the two wires. If the currents flow in opposite directions, the force is attractive and if the current is in the same direction, the force is repulsive. One ampere of current corresponds to the value carried by two wires which when placed one metre apart will experience a force of 1 Newton between each other.
Formula used: In this solution, we will use the following formula:
Force per length between two current-carrying wires: $\dfrac{F}{l} = \dfrac{{2{\mu _0}{I_1}{I_2}}}{r}$ where ${I_1}\,{\text{and}}\,{I_2}$ are the current in the two wires, $r$ is the distance between them.
Complete step by step answer:
We know that the force per length between two current-carrying wires is given by:
$\dfrac{F}{l} = \dfrac{{2{\mu _0}{I_1}{I_2}}}{r}$
In this equation, for two given wires, we can calculate the force that acts between them and we can also measure the distance between the two wires experimentally. Then we can say that 1 Newton of force acts per unit length for two current-carrying wires that carry a current of 1 Ampere and are placed 1 metre apart.
Hence the force between two current-carrying parallel wires is used to define the units of Ampere.
So, option (A) is the correct choice.
Note: The force between two current-carrying wires depends on the direction of the currents in the two wires. If the currents flow in opposite directions, the force is attractive and if the current is in the same direction, the force is repulsive. One ampere of current corresponds to the value carried by two wires which when placed one metre apart will experience a force of 1 Newton between each other.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

