Answer
Verified
114.9k+ views
Hint: We are asked to find the relation between the force acting on a point charge due to a dipole and the its relation with the dipole. We can start by writing down the formula for the electric field due to an electric dipole and use the relation between electric field and electric force and establish a relation between electric force and distance to find our solution.
Formulas used:
1. The electric field due to an electric dipole is given by the formula,
\[E \propto \dfrac{1}{{{r^3}}}\]
We use this formula as there are two ways of finding the electric field due to an electric dipole. They are along the axis of the electric dipole and perpendicular to it. to the dipole. In either of the cases the end result of proportionality is the same.
2. The relation between electric field and electric force is given by the formula,
\[F = Eq\]
Where \[q\] is the charge
Complete answer:
Let us start by writing down the relation between electric field due to an electric dipole. Which is given by,
\[E \propto \dfrac{1}{{{r^3}}}\]
Now the relation between electric field and electric force is to be noted and it is given by,
\[F = Eq\]
From the two equations above we can conclude that,
\[\dfrac{F}{q} \propto \dfrac{1}{{{r^3}}}\]
Since the charge is also a constant in an electric dipole, we can rewrite the above equation as follows,
\[F \propto \dfrac{1}{{{r^3}}}\]
Which implies that the correct answer is option (c) \[F \propto \dfrac{1}{{{r^3}}}\].
Note: An electric dipole is an arrangement of two charges of equal but opposite magnitudes separated by a distance. An example of an electric dipole is shown below where ‘q’ is the charge.
Formulas used:
1. The electric field due to an electric dipole is given by the formula,
\[E \propto \dfrac{1}{{{r^3}}}\]
We use this formula as there are two ways of finding the electric field due to an electric dipole. They are along the axis of the electric dipole and perpendicular to it. to the dipole. In either of the cases the end result of proportionality is the same.
2. The relation between electric field and electric force is given by the formula,
\[F = Eq\]
Where \[q\] is the charge
Complete answer:
Let us start by writing down the relation between electric field due to an electric dipole. Which is given by,
\[E \propto \dfrac{1}{{{r^3}}}\]
Now the relation between electric field and electric force is to be noted and it is given by,
\[F = Eq\]
From the two equations above we can conclude that,
\[\dfrac{F}{q} \propto \dfrac{1}{{{r^3}}}\]
Since the charge is also a constant in an electric dipole, we can rewrite the above equation as follows,
\[F \propto \dfrac{1}{{{r^3}}}\]
Which implies that the correct answer is option (c) \[F \propto \dfrac{1}{{{r^3}}}\].
Note: An electric dipole is an arrangement of two charges of equal but opposite magnitudes separated by a distance. An example of an electric dipole is shown below where ‘q’ is the charge.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
Collision - Important Concepts and Tips for JEE
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Other Pages
Young's Double Slit Experiment Derivation
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Current Loop as Magnetic Dipole and Its Derivation for JEE
Two plane mirrors are inclined at angle theta as shown class 12 physics JEE_Main
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Keys & Solutions
JEE Main 2023 January 30 Shift 2 Question Paper with Answer Keys & Solutions