
The equivalent inductance of two inductors is 2.4 mH when connected in parallel and 10 mH when connected in series. The difference between two inductance is $($neglecting mutual induction between coils$)$.
(A) 3mH
(B) 2mH
(C) 4mH
(D) 16mH
Answer
162.6k+ views
Hint: When inductor connected in series combination then equivalent inductance will be given as
${L_{eq}} = {L_1} + {L_2} + {L_3} + ....$
When inductors are connected in parallel combination then equivalent inductance will be given as
$\dfrac{1}{{{L_{eq}}}} = \dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}} + \dfrac{1}{{{L_3}}} + .....$
Step by step answer: Given that 2 inductors ${L_1}$ and ${L_2}(Let)$ are connected in parallel then their equivalent inductance is 2.4 mH.
i.e., $\dfrac{1}{{{L_{eq}}}} = \dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}}$
So, \[\dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}} = \dfrac{1}{{2.4}}\]
$\dfrac{{{L_2} + {L_1}}}{{{L_1}{L_2}}} = \dfrac{{10}}{{24}}$
${L_1}{L_2} = \dfrac{{24}}{{10}}({L_1} + {L_2})$ …..(1)
When ${L_1}$ and ${L_2}$ are connected in series then their equivalent inductance is 10 mH.
i.e., ${L_{eq}} = {L_1} + {L_2}$
$10 = {L_1} + {L_2}$ …..(2)
From equation 1 & 2 we get
${L_1}{L_2} = \dfrac{{24}}{{10}} \times 10$
${L_1}{L_2} = 24$
So, ${L_1} = \dfrac{{24}}{{{L_2}}}$ …..(3)
On putting the value of ${L_1}$ in equation 2
$\dfrac{{24}}{{{L_2}}} + {L_2} = 10$
$\dfrac{{24 + L_2^2}}{{{L_2}}} = 10$
$24 + L_2^2 = 10{L_2}$
$L_2^2 - 10{L_2} + 24 = 0$
$L_2^2 - 6{L_2} - 4{L_2} + 24 = 0$
${L_2}({L_2} - 6) - 4({L_2} - 6) = 0$
$({L_2} - 6)({L_2} - 4) = 0$
${L_2} = 4,6$ ….(4)
Now put the value of ${L_2}$ in equation 3
We will get ${L_1}$.
Here we have 2 values of ${L_2}$. So, put one by one each value and will get ${L_1}$.
When ${L_2} = 4mH$
Then from equation 3
${L_1} = \dfrac{{24}}{4}$
${L_1} = 6mH$ …..(6)
When ${L_2} = 6mH$
Then from equation 3
${L_1} = \dfrac{{24}}{6}$
${L_1} = \dfrac{{24}}{6}$
${L_1} = 4mH$ …..(6)
So, we will get 2 combinations of ${L_1}$ & ${L_2}$ which are
If ${L_1} = 4mH$ If ${L_1} = 6mH$
Then ${L_2} = 6mH$ then ${L_2} = 4mH$
Now, we have to calculate the difference between ${L_1}$ and ${L_2}$. Which is
${L_1} - {L_2} = 6 - 4 = 2mH$
So, from both combinations of ${L_1}$ and ${L_2}$ we will get a difference between them of 2 mH.
Hence, option B is the correct answer. 2mH
Note: In many problems of inductors, they can ask for current and voltage.
In series combination, the value of current in each inductor is the same. But voltage is different.
In parallel combination, the potential difference i.e., voltage across each inductor is same but current is different.
${L_{eq}} = {L_1} + {L_2} + {L_3} + ....$
When inductors are connected in parallel combination then equivalent inductance will be given as
$\dfrac{1}{{{L_{eq}}}} = \dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}} + \dfrac{1}{{{L_3}}} + .....$
Step by step answer: Given that 2 inductors ${L_1}$ and ${L_2}(Let)$ are connected in parallel then their equivalent inductance is 2.4 mH.
i.e., $\dfrac{1}{{{L_{eq}}}} = \dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}}$
So, \[\dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}} = \dfrac{1}{{2.4}}\]
$\dfrac{{{L_2} + {L_1}}}{{{L_1}{L_2}}} = \dfrac{{10}}{{24}}$
${L_1}{L_2} = \dfrac{{24}}{{10}}({L_1} + {L_2})$ …..(1)
When ${L_1}$ and ${L_2}$ are connected in series then their equivalent inductance is 10 mH.
i.e., ${L_{eq}} = {L_1} + {L_2}$
$10 = {L_1} + {L_2}$ …..(2)
From equation 1 & 2 we get
${L_1}{L_2} = \dfrac{{24}}{{10}} \times 10$
${L_1}{L_2} = 24$
So, ${L_1} = \dfrac{{24}}{{{L_2}}}$ …..(3)
On putting the value of ${L_1}$ in equation 2
$\dfrac{{24}}{{{L_2}}} + {L_2} = 10$
$\dfrac{{24 + L_2^2}}{{{L_2}}} = 10$
$24 + L_2^2 = 10{L_2}$
$L_2^2 - 10{L_2} + 24 = 0$
$L_2^2 - 6{L_2} - 4{L_2} + 24 = 0$
${L_2}({L_2} - 6) - 4({L_2} - 6) = 0$
$({L_2} - 6)({L_2} - 4) = 0$
${L_2} = 4,6$ ….(4)
Now put the value of ${L_2}$ in equation 3
We will get ${L_1}$.
Here we have 2 values of ${L_2}$. So, put one by one each value and will get ${L_1}$.
When ${L_2} = 4mH$
Then from equation 3
${L_1} = \dfrac{{24}}{4}$
${L_1} = 6mH$ …..(6)
When ${L_2} = 6mH$
Then from equation 3
${L_1} = \dfrac{{24}}{6}$
${L_1} = \dfrac{{24}}{6}$
${L_1} = 4mH$ …..(6)
So, we will get 2 combinations of ${L_1}$ & ${L_2}$ which are
If ${L_1} = 4mH$ If ${L_1} = 6mH$
Then ${L_2} = 6mH$ then ${L_2} = 4mH$
Now, we have to calculate the difference between ${L_1}$ and ${L_2}$. Which is
${L_1} - {L_2} = 6 - 4 = 2mH$
So, from both combinations of ${L_1}$ and ${L_2}$ we will get a difference between them of 2 mH.
Hence, option B is the correct answer. 2mH
Note: In many problems of inductors, they can ask for current and voltage.
In series combination, the value of current in each inductor is the same. But voltage is different.
In parallel combination, the potential difference i.e., voltage across each inductor is same but current is different.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Charging and Discharging of Capacitor

Wheatstone Bridge for JEE Main Physics 2025

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

In which of the following forms the energy is stored class 12 physics JEE_Main
