
The electric field part of an electromagnetic wave in a medium is represented by
$
{E_x} = 0 \\
{E_y} = 2.5\dfrac{N}{C}\cos \left[ {(2\pi \times {{10}^6}\dfrac{{rad}}{s})t - (\pi \times {{10}^{ - 2}}\dfrac{{rad}}{m}x)} \right]; \\
{E_x} = 0. \\
$
The wave is:
(A) Moving along x direction with frequency $2\pi \times {10^6}Hz$ and the wavelength 200 m.
(B) Moving along y direction with frequency $2\pi \times {10^6}Hz$ and wavelength 200 m.
(C) Moving along x direction with frequency ${10^6}Hz$ and wavelength 100 m
(D) Moving along x direction with frequency ${10^6}Hz$ and wavelength 200 m.
Answer
165.3k+ views
Hint: To answer this question, we need to know the standard equation of an electromagnetic wave. The equation of the electromagnetic wave that is then given in the question should be compared with the standard equation. From the comparison we can obtain the quantities required for the answer. From the sign of the answer that we will obtain, we can find the coordinate to which it is belonging.
Complete step by step answer:
We know that the standard equation of electromagnetic wave is given by:
${E_y} = {E_0}\cos (wt - kx)$
The equation that is given is:
$
\\
{E_y} = 2.5\dfrac{N}{C}\cos \left[ {(2\pi \times {{10}^6}\dfrac{{rad}}{s})t - (\pi \times {{10}^{ - 2}}\dfrac{{rad}}{m}x)} \right] \\
\\
$
Now we have to compare the given equation with the standard equation.
On the comparison we get that:
$
w = 2\pi f \\
\Rightarrow w = 2\pi \times {10^6} \\
\Rightarrow \lambda f = {10^6}Hz \\
$
It is also known to us that:
$
\dfrac{{2\pi }}{\lambda } = k = \pi \times {10^{ - 2}}{m^{ - 1}} \\
\Rightarrow f = \lambda = 200m \\
$
Hence we can say that the wave is moving along the positive x direction with a frequency of ${10^6}Hz $and a wavelength of 200 m.
So option D is the correct answer.
Note: In this question we have come across the term electromagnetic wave. For better understanding we should be defining the electromagnetic waves. The waves that are created due to the occurrence of the vibrations between the electric and the magnetic field are known as electromagnetic waves.
The standard equation of the electromagnetic wave is described as a second order partially differentiated equation. The main aim of the equation is to describe the propagation of the electromagnetic waves through a medium or even through a vacuum.
The standard equation of the electromagnetic waves represents a three dimensional form of the wave equation.
Complete step by step answer:
We know that the standard equation of electromagnetic wave is given by:
${E_y} = {E_0}\cos (wt - kx)$
The equation that is given is:
$
\\
{E_y} = 2.5\dfrac{N}{C}\cos \left[ {(2\pi \times {{10}^6}\dfrac{{rad}}{s})t - (\pi \times {{10}^{ - 2}}\dfrac{{rad}}{m}x)} \right] \\
\\
$
Now we have to compare the given equation with the standard equation.
On the comparison we get that:
$
w = 2\pi f \\
\Rightarrow w = 2\pi \times {10^6} \\
\Rightarrow \lambda f = {10^6}Hz \\
$
It is also known to us that:
$
\dfrac{{2\pi }}{\lambda } = k = \pi \times {10^{ - 2}}{m^{ - 1}} \\
\Rightarrow f = \lambda = 200m \\
$
Hence we can say that the wave is moving along the positive x direction with a frequency of ${10^6}Hz $and a wavelength of 200 m.
So option D is the correct answer.
Note: In this question we have come across the term electromagnetic wave. For better understanding we should be defining the electromagnetic waves. The waves that are created due to the occurrence of the vibrations between the electric and the magnetic field are known as electromagnetic waves.
The standard equation of the electromagnetic wave is described as a second order partially differentiated equation. The main aim of the equation is to describe the propagation of the electromagnetic waves through a medium or even through a vacuum.
The standard equation of the electromagnetic waves represents a three dimensional form of the wave equation.
Recently Updated Pages
Transistor as Amplifier: Working, Diagram, Uses & Questions

Moving Charges and Magnetism: Laws, Formulas & Applications

Environmental Chemistry Chapter for JEE Main Chemistry

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Get P Block Elements for JEE Main 2025 with clear Explanations

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Uniform Acceleration

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Wheatstone Bridge for JEE Main Physics 2025
