
The angular momentum of an electron present in the excited state of hydrogen is $\dfrac{{1.5h}}{\pi }$. The electron is present in:
(a) Third orbit
(b) Second orbit
(c) Fourth orbit
(d) Fifth orbit
Answer
172.2k+ views
Hint: As before doing a solution, we must firstly explain what angular momentum is. Angular momentum is the product of any body’s mass, velocity and radius. In simple way the property characterising the rotatory inertia of an object about an axis that may or may not pass through the system and in this question we have to find the orbit where the electron is present.
Complete Step by Step Solution:
Given,
Angular Momentum in the excited state of hydrogen = $\dfrac{{1.5h}}{\pi }$
As we know the Formula of angular momentum is,
Angular Momentum=$\dfrac{{nh}}{{2\pi }}$
Here in this all the terms stands for,
n = n is the orbit in which electron is present
h = Planck’s Constant
Where h always provides a constant value and n presents the orbit of the electron and in this question we have to find the orbit of the electron.
By Comparing the value from Angular momentum’s equation, we get
$\dfrac{{1.5h}}{\pi } = \dfrac{{nh}}{{2\pi }}$
Since, by comparing both quantities (using substitution)
n = 3
Hence, the electron present in the Third orbit.
So, the correct answer is: (a) Third Orbit
Note: There are 2 special types of angular momentum of an object: the spin angular momentum is the angular momentum about the object centre of mass while the orbital angular momentum is the angular momentum about the chosen centre of rotation.
Complete Step by Step Solution:
Given,
Angular Momentum in the excited state of hydrogen = $\dfrac{{1.5h}}{\pi }$
As we know the Formula of angular momentum is,
Angular Momentum=$\dfrac{{nh}}{{2\pi }}$
Here in this all the terms stands for,
n = n is the orbit in which electron is present
h = Planck’s Constant
Where h always provides a constant value and n presents the orbit of the electron and in this question we have to find the orbit of the electron.
By Comparing the value from Angular momentum’s equation, we get
$\dfrac{{1.5h}}{\pi } = \dfrac{{nh}}{{2\pi }}$
Since, by comparing both quantities (using substitution)
n = 3
Hence, the electron present in the Third orbit.
So, the correct answer is: (a) Third Orbit
Note: There are 2 special types of angular momentum of an object: the spin angular momentum is the angular momentum about the object centre of mass while the orbital angular momentum is the angular momentum about the chosen centre of rotation.
Recently Updated Pages
Sets, Relations, and Functions Mock Test 2025-26

Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Enthalpy of Combustion with Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Chemistry Chapter 1 Some Basic Concepts of Chemistry in Hindi - 2025-26

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction - 2025-26
