Answer
Verified
114.6k+ views
Hint: The ratio of emissive power for a body to that of a black body is to be considered as absorptivity because the relation required is at same temperature.
Complete step-by-step solution
Emissive power of a body at a particular temperature can be defined as the energy emitted per second per unit surface area of the body within a unit wavelength range.
Absorptive power of a body at a particular temperature can be defined as the ratio of the amount of energy absorbed in a given time by the surface to the amount of energy incident on the surface at the same time.
According to Kirchhoff's law, it states that the ratio of emissive power to the absorptive power for a given wavelength at a given temperature is the same for all the bodies and is equal to the emissive power of a perfectly black body at that temperature.
$\dfrac{E}{\alpha } = {E_b}$
The condition is stated as the same temperature hence the ratio of E and $E_b$ is called absorptivity.
Hence the relation between them is
$\dfrac{E}{{{E_b}}} = \alpha $
And the correct option is D.
Note: If ε is the emissivity of the body,
1. For a perfectly black body ε=1
2. For highly polished body ε=0
3. For practical bodies it lies between zero and one.
Complete step-by-step solution
Emissive power of a body at a particular temperature can be defined as the energy emitted per second per unit surface area of the body within a unit wavelength range.
Absorptive power of a body at a particular temperature can be defined as the ratio of the amount of energy absorbed in a given time by the surface to the amount of energy incident on the surface at the same time.
According to Kirchhoff's law, it states that the ratio of emissive power to the absorptive power for a given wavelength at a given temperature is the same for all the bodies and is equal to the emissive power of a perfectly black body at that temperature.
$\dfrac{E}{\alpha } = {E_b}$
The condition is stated as the same temperature hence the ratio of E and $E_b$ is called absorptivity.
Hence the relation between them is
$\dfrac{E}{{{E_b}}} = \alpha $
And the correct option is D.
Note: If ε is the emissivity of the body,
1. For a perfectly black body ε=1
2. For highly polished body ε=0
3. For practical bodies it lies between zero and one.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs