
When the magnetic moment of two magnets is compared using the equal distance method, the deflections produced are \[{45^0}\] and \[{30^0}\]. If the lengths of magnets are in the ratio 1:2, find the ratio of their pole strength.
A. \[3:1\]
B. \[3:2\]
C. \[\sqrt 3 :1\]
D. \[2\sqrt 3 :1\]
Answer
166.5k+ views
Hint: Before we start addressing the problem, we need to know the data provided. Here the deflections produced by the two magnets and also the lengths of the magnets are given. Using this we are going to find the ratio of pole strength of the two magnets. The pole strength of a magnet is referred to as the strength with which the materials get attracted to the magnet.
Formula Used:
The formula to find the magnetic moment is given by,
\[M = mL\]
Where, m is pole strength of the magnet and L is the length of the magnet.
Complete step by step solution:
In order to find the magnetic moment, we have,
\[M = mL\]
Now the magnetic moment of first magnet is given by,
\[{M_1} = {m_1}{L_1}\]………….. (1)
Similarly, for the second magnet is given by,
\[{M_2} = {m_2}{L_2}\]……………. (2)
We know that ,
\[\dfrac{{{M_1}}}{{{M_2}}} = \dfrac{{\tan {\theta _1}}}{{\tan {\theta _2}}}\]……..(3)
Substitute the value of equations (1) and (2) in equation (3) we get,
\[\dfrac{{{m_1}{L_1}}}{{{m_2}{L_2}}} = \dfrac{{\tan \left( {{{45}^0}} \right)}}{{\tan \left( {{{30}^0}} \right)}} \\ \]
\[\Rightarrow \dfrac{{{m_1}{L_1}}}{{{m_2}{L_2}}} = \dfrac{1}{{\dfrac{1}{{\sqrt 3 }}}} \\ \]
\[\Rightarrow \dfrac{{{m_1}}}{{{m_2}}} = \dfrac{{{L_2}}}{{{L_1}}} \times \dfrac{1}{{\dfrac{1}{{\sqrt 3 }}}} \\ \]
\[\Rightarrow \dfrac{{{m_1}}}{{{m_2}}} = \dfrac{2}{1} \times \dfrac{{\sqrt 3 }}{1} \\ \]
\[\Rightarrow \dfrac{{{m_1}}}{{{m_2}}} = \dfrac{{2\sqrt 3 }}{1} \\ \]
\[\therefore {m_1}:{m_2} = 2\sqrt 3 :1\]
Therefore, the ratio of their pole strengths is \[2\sqrt 3 :1\].
Hence, option D is the correct answer.
Note:The strongest magnetic field of a bar magnet is found at its poles. The field starts strongest at the poles and keeps reducing in strength and reaches the minimum at the centre and again keeps increasing as we move towards the other end. Hence, it is strongest at the poles and is considered equally strong at both poles.
Formula Used:
The formula to find the magnetic moment is given by,
\[M = mL\]
Where, m is pole strength of the magnet and L is the length of the magnet.
Complete step by step solution:
In order to find the magnetic moment, we have,
\[M = mL\]
Now the magnetic moment of first magnet is given by,
\[{M_1} = {m_1}{L_1}\]………….. (1)
Similarly, for the second magnet is given by,
\[{M_2} = {m_2}{L_2}\]……………. (2)
We know that ,
\[\dfrac{{{M_1}}}{{{M_2}}} = \dfrac{{\tan {\theta _1}}}{{\tan {\theta _2}}}\]……..(3)
Substitute the value of equations (1) and (2) in equation (3) we get,
\[\dfrac{{{m_1}{L_1}}}{{{m_2}{L_2}}} = \dfrac{{\tan \left( {{{45}^0}} \right)}}{{\tan \left( {{{30}^0}} \right)}} \\ \]
\[\Rightarrow \dfrac{{{m_1}{L_1}}}{{{m_2}{L_2}}} = \dfrac{1}{{\dfrac{1}{{\sqrt 3 }}}} \\ \]
\[\Rightarrow \dfrac{{{m_1}}}{{{m_2}}} = \dfrac{{{L_2}}}{{{L_1}}} \times \dfrac{1}{{\dfrac{1}{{\sqrt 3 }}}} \\ \]
\[\Rightarrow \dfrac{{{m_1}}}{{{m_2}}} = \dfrac{2}{1} \times \dfrac{{\sqrt 3 }}{1} \\ \]
\[\Rightarrow \dfrac{{{m_1}}}{{{m_2}}} = \dfrac{{2\sqrt 3 }}{1} \\ \]
\[\therefore {m_1}:{m_2} = 2\sqrt 3 :1\]
Therefore, the ratio of their pole strengths is \[2\sqrt 3 :1\].
Hence, option D is the correct answer.
Note:The strongest magnetic field of a bar magnet is found at its poles. The field starts strongest at the poles and keeps reducing in strength and reaches the minimum at the centre and again keeps increasing as we move towards the other end. Hence, it is strongest at the poles and is considered equally strong at both poles.
Recently Updated Pages
Classification of Elements and Periodicity in Properties | Trends, Notes & FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Transistor as Amplifier: Working, Diagram, Uses & Questions

Moving Charges and Magnetism: Laws, Formulas & Applications

Environmental Chemistry Chapter for JEE Main Chemistry

Trending doubts
Combination of Capacitors - In Parallel and Series for JEE

Electrical Field of Charged Spherical Shell - JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

Other Pages
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Charging and Discharging of Capacitor

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Advanced 2025 Notes

Electrochemistry JEE Advanced 2025 Notes

The potential of A is 10V then the potential of B is class 12 physics JEE_Main
