Answer
Verified
114.9k+ views
Hint:
In order to find out magnetic dipole moment is a vector quantity or a scalar quantity, first we need to know what is magnetic dipole moment, how it is calculated and what is it exact formula and what are the quantity related to which affects its value and finally we will be able to tell is it a scalar or vector quantity.
Complete step by step solution:
First start with what is magnetic dipole moment:
The magnetic dipole moment is the magnetic field strength and the direction or orientation of a magnet or other objects such as electric current loops or molecules that produce a magnetic field. It is equal to the electric current flowing through the loop multiplied by the area of the electric current loop and its direction is determined by the right hand rule for rotations.
Now, we know that the magnetic dipole moment is given by:
$\vec M = Ni\vec A$
Where, $\vec M$ is magnetic dipole moment.
N is the number of turns in the coil or loop.
$i$ is the electric current flowing through the loop.
\[\vec A\] is the area vector of the current loop.\[\]
From the above formula it is clear that the magnetic dipole moment \[\vec M\] is a vector quantity and its direction is the same as the area vector \[\vec A\] direction.
Hence the correct answer is Option(B).
Note:
Here it was very easy to find whether the magnetic dipole moment is a scalar or vector quantity from the formula as it has an area vector in it hence it can never be a scalar quantity. Also magnetic dipole moment cannot be constant as it has variable quantity in its formula such as current, no of turns and area vector.
In order to find out magnetic dipole moment is a vector quantity or a scalar quantity, first we need to know what is magnetic dipole moment, how it is calculated and what is it exact formula and what are the quantity related to which affects its value and finally we will be able to tell is it a scalar or vector quantity.
Complete step by step solution:
First start with what is magnetic dipole moment:
The magnetic dipole moment is the magnetic field strength and the direction or orientation of a magnet or other objects such as electric current loops or molecules that produce a magnetic field. It is equal to the electric current flowing through the loop multiplied by the area of the electric current loop and its direction is determined by the right hand rule for rotations.
Now, we know that the magnetic dipole moment is given by:
$\vec M = Ni\vec A$
Where, $\vec M$ is magnetic dipole moment.
N is the number of turns in the coil or loop.
$i$ is the electric current flowing through the loop.
\[\vec A\] is the area vector of the current loop.\[\]
From the above formula it is clear that the magnetic dipole moment \[\vec M\] is a vector quantity and its direction is the same as the area vector \[\vec A\] direction.
Hence the correct answer is Option(B).
Note:
Here it was very easy to find whether the magnetic dipole moment is a scalar or vector quantity from the formula as it has an area vector in it hence it can never be a scalar quantity. Also magnetic dipole moment cannot be constant as it has variable quantity in its formula such as current, no of turns and area vector.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
Electric field due to uniformly charged sphere class 12 physics JEE_Main