
In Bohr’s model of the hydrogen atom, the radius of the first orbit of an electron is ${r_0}$. Then the radius of the third orbit is?
A) $\dfrac{{{r_0}}}{9}$
B) ${r_0}$
C) $3{r_0}$
D) $9{r_0}$
Answer
232.8k+ views
Hint: Bohr proposed that electrons orbited the nucleus in specific orbits or shells with a fixed radius. According to Bohr’s model, an electron would absorb energy in the form of photons to get excited to a higher energy level. The Bohr model derives a radius for the nth excited state of hydrogen-like atoms.
Formula Used:
We will be using the formula of Radius of the nth orbit of an electron. It is given by ${r_n} = {r_0}\dfrac{{{n^2}}}{Z}$.
Given: In Bohr’s model of the hydrogen atom, the radius of the first orbit is ${r_0}$ and to find the radius of the third orbit.
Complete step by step solution:
The radius of the nth orbit of an electron is given by ${r_n} = {r_0}\dfrac{{{n^2}}}{Z}$
Where, ${r_n}$- Radius of the nth Orbit
${r_0}$- Radius of the first Orbit
Z - Atomic number
\[n\] - Number of orbits
For the hydrogen atom, the Atomic number $Z = 1$
$ \Rightarrow {r_n} = {r_0}{n^2}$
So, for the third orbit $n = 3$
Thus the radius of the third orbit ${r_3} = {r_0} \times {3^2} = 9{r_0}$
The radius of the third orbit is calculated as $9{r_0}$.
Answer is Option (D), $9{r_0}$.
Note: In $1913$, Niel Bohr introduced the atomic hydrogen model. Bohr proposed that electrons travel in specific orbits, shells around the nucleus. The Bohr model is used to describe the structure of hydrogen energy levels. It is the first atomic model to explain the radiation spectra of atomic hydrogen.
Limitation of the Bohr model of the Hydrogen Atom:
It couldn’t explain why spectral lines are more intense.
It doesn’t work well for complex atoms.
Heisenberg’s uncertainty principle contradicts Bohr’s idea of electrons existing in specific orbits with a known velocity and radius.
Formula Used:
We will be using the formula of Radius of the nth orbit of an electron. It is given by ${r_n} = {r_0}\dfrac{{{n^2}}}{Z}$.
Given: In Bohr’s model of the hydrogen atom, the radius of the first orbit is ${r_0}$ and to find the radius of the third orbit.
Complete step by step solution:
The radius of the nth orbit of an electron is given by ${r_n} = {r_0}\dfrac{{{n^2}}}{Z}$
Where, ${r_n}$- Radius of the nth Orbit
${r_0}$- Radius of the first Orbit
Z - Atomic number
\[n\] - Number of orbits
For the hydrogen atom, the Atomic number $Z = 1$
$ \Rightarrow {r_n} = {r_0}{n^2}$
So, for the third orbit $n = 3$
Thus the radius of the third orbit ${r_3} = {r_0} \times {3^2} = 9{r_0}$
The radius of the third orbit is calculated as $9{r_0}$.
Answer is Option (D), $9{r_0}$.
Note: In $1913$, Niel Bohr introduced the atomic hydrogen model. Bohr proposed that electrons travel in specific orbits, shells around the nucleus. The Bohr model is used to describe the structure of hydrogen energy levels. It is the first atomic model to explain the radiation spectra of atomic hydrogen.
Limitation of the Bohr model of the Hydrogen Atom:
It couldn’t explain why spectral lines are more intense.
It doesn’t work well for complex atoms.
Heisenberg’s uncertainty principle contradicts Bohr’s idea of electrons existing in specific orbits with a known velocity and radius.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

