
Hydrogen atom excited energy level from fundamental state to $n = 3$. The number of spectral lines, according to Bohr, is:
A. $4$
B. $3$
C. $1$
D.$2$
Answer
214.5k+ views
Hint: In order to answer the issue, keep in mind that the hydrogen spectrum operates according to certain rules, and that the quantity of spectral lines in a certain series reflects all conceivable transitions from an energy level higher than that level to the level represented by that series.
Formula used:
The following formula can be used to determine how many spectral lines or emission lines the electrons will produce when they fall from orbit $n$ to the ground state:
$\text{Number of spectral lines} = \dfrac{{n(n - 1)}}{2}$.
Here, $n$ is an orbit where the ground state electron begins to fall.
Complete step by step solution:
In the question, we have given that a hydrogen atom electron moves from the $n = 3$ state to the ground state. To calculate the number of maximum spectral lines or emission lines that will be produced when the electron transitions from the $n = 3$ to the ground state.
Using the formula for finding the total number of possible spectral lines,
$\text{Number of spectral lines} = \dfrac{{n(n - 1)}}{2}$
Now, substitute the value of $n$in the above formula, then we obtain:
$\text{Number of spectral lines} = \dfrac{{3(3 - 1)}}{2} \\
\Rightarrow \text{Number of spectral lines} = \dfrac{{3(2)}}{2} \\
\therefore \text{Number of spectral lines} = 3 \\$
Therefore, the excited electron of a hydrogen atom at $n = 3$ will form a maximum of $3$ emission lines before it drops to the ground state.
Hence, the correct option is B.
Note: It should be noted that the emission lines or spectral lines form when an electron moves from a higher orbit to a lower orbit, which indicates that the electron is losing or emitting energy. These lines, often referred to as emission lines or spectral lines, are produced when an electron emits energy. An electron moves to a higher energy level and absorbs some of it then resulting in an absorption spectrum or spectral absorption lines.
Formula used:
The following formula can be used to determine how many spectral lines or emission lines the electrons will produce when they fall from orbit $n$ to the ground state:
$\text{Number of spectral lines} = \dfrac{{n(n - 1)}}{2}$.
Here, $n$ is an orbit where the ground state electron begins to fall.
Complete step by step solution:
In the question, we have given that a hydrogen atom electron moves from the $n = 3$ state to the ground state. To calculate the number of maximum spectral lines or emission lines that will be produced when the electron transitions from the $n = 3$ to the ground state.
Using the formula for finding the total number of possible spectral lines,
$\text{Number of spectral lines} = \dfrac{{n(n - 1)}}{2}$
Now, substitute the value of $n$in the above formula, then we obtain:
$\text{Number of spectral lines} = \dfrac{{3(3 - 1)}}{2} \\
\Rightarrow \text{Number of spectral lines} = \dfrac{{3(2)}}{2} \\
\therefore \text{Number of spectral lines} = 3 \\$
Therefore, the excited electron of a hydrogen atom at $n = 3$ will form a maximum of $3$ emission lines before it drops to the ground state.
Hence, the correct option is B.
Note: It should be noted that the emission lines or spectral lines form when an electron moves from a higher orbit to a lower orbit, which indicates that the electron is losing or emitting energy. These lines, often referred to as emission lines or spectral lines, are produced when an electron emits energy. An electron moves to a higher energy level and absorbs some of it then resulting in an absorption spectrum or spectral absorption lines.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Average and RMS Value in Physics: Formula, Comparison & Application

