
Explain what is optical path length. How is it different from actual path length?
Answer
476.9k+ views
Hint: Optical path length can be given as the product of the refractive index and the distance which would have travelled by light at a particular time. The actual path length is the distance
travelled by light in a medium.
Formula used:
We will be using the following formulae; \[n = \dfrac{{{v_v}}}{{{v_m}}}\] where \[n\] is the index of refraction of a particular medium, \[{v_v}\] is the speed of light vacuum, \[{v_m}\] is the speed of light in that medium. \[{d_o} = n \times {d_g}\] where \[{d_o}\] is the optical path length, \[n\] is the refractive index of the medium and \[{d_g}\] is the actual path length or the geometric length.
Complete step by step solution:
Generally optical path length and actual path length are related but are not identical.
The optical path length of light in a medium can actually be defined as the length or distance in which the light would have travelled in the same time if it were travelling in a vacuum. This statement means that if a light travels through a particular medium, it would have travelled a particular length or distance within a particular time, but the optical path length is the length or distance that light waves would have travelled if it were not travelling in a medium but in vacuum.
Generally, the optical length can be given as
\[{d_o} = n \times {d_g}\] where \[{d_o}\] is the optical path length, \[n\] is the refractive index of the medium and \[{d_g}\] is the actual path length or the geometric.
Actual path length or Geometric length is simply the real length travelled by the light in the medium.
Note: For clarity, we can prove the formula for the optical path length as follows:
The distance travelled by light in the medium is
\[{d_g} = {v_m} \times t\]
but now, the distance the length would have travelled in vacuum in the same time would be
\[{d_o} = {v_v} \times t\]
\[ \Rightarrow t = \dfrac{{{d_o}}}{{{v_v}}}\]
Inserting into \[{d_g} = {v_m} \times t\]
\[{d_g} = {v_m} \times \dfrac{{{d_o}}}{{{v_v}}}\]
By making \[{d_o}\] subject of the formula,
\[{d_o} = \dfrac{{{v_v}}}{{{v_m}}}{d_g}\]
Now recalling that, \[n = \dfrac{{{v_v}}}{{{v_m}}}\] where \[n\] is the index of refraction of a particular medium, \[{v_v}\] is the speed of light vacuum, \[{v_m}\] is the speed of light in that medium, then
\[{d_o} = n{d_g}\]
travelled by light in a medium.
Formula used:
We will be using the following formulae; \[n = \dfrac{{{v_v}}}{{{v_m}}}\] where \[n\] is the index of refraction of a particular medium, \[{v_v}\] is the speed of light vacuum, \[{v_m}\] is the speed of light in that medium. \[{d_o} = n \times {d_g}\] where \[{d_o}\] is the optical path length, \[n\] is the refractive index of the medium and \[{d_g}\] is the actual path length or the geometric length.
Complete step by step solution:
Generally optical path length and actual path length are related but are not identical.
The optical path length of light in a medium can actually be defined as the length or distance in which the light would have travelled in the same time if it were travelling in a vacuum. This statement means that if a light travels through a particular medium, it would have travelled a particular length or distance within a particular time, but the optical path length is the length or distance that light waves would have travelled if it were not travelling in a medium but in vacuum.
Generally, the optical length can be given as
\[{d_o} = n \times {d_g}\] where \[{d_o}\] is the optical path length, \[n\] is the refractive index of the medium and \[{d_g}\] is the actual path length or the geometric.
Actual path length or Geometric length is simply the real length travelled by the light in the medium.
Note: For clarity, we can prove the formula for the optical path length as follows:
The distance travelled by light in the medium is
\[{d_g} = {v_m} \times t\]
but now, the distance the length would have travelled in vacuum in the same time would be
\[{d_o} = {v_v} \times t\]
\[ \Rightarrow t = \dfrac{{{d_o}}}{{{v_v}}}\]
Inserting into \[{d_g} = {v_m} \times t\]
\[{d_g} = {v_m} \times \dfrac{{{d_o}}}{{{v_v}}}\]
By making \[{d_o}\] subject of the formula,
\[{d_o} = \dfrac{{{v_v}}}{{{v_m}}}{d_g}\]
Now recalling that, \[n = \dfrac{{{v_v}}}{{{v_m}}}\] where \[n\] is the index of refraction of a particular medium, \[{v_v}\] is the speed of light vacuum, \[{v_m}\] is the speed of light in that medium, then
\[{d_o} = n{d_g}\]
Recently Updated Pages
Degree of Dissociation Important Concepts and Tips for JEE

JEE Main Chemistry Question Paper PDF Download with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Wheatstone Bridge for JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

What is Hybridisation in Chemistry?

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
