
$\cos \alpha .\sin (\beta -\gamma )+\cos \beta .\sin (\gamma -\alpha )+\cos \gamma .\sin (\alpha -\beta )$ is equal to
A . 0
B . $\dfrac{1}{2}$
C . 1
D . $\cos \alpha \cos \beta \cos \gamma $
Answer
144.6k+ views
Hint: In the given question we have to find the value of $\cos \alpha .\sin (\beta -\gamma )+\cos \beta .\sin (\gamma -\alpha )+\cos \gamma .\sin (\alpha -\beta )$. As we see an identity of sin is used in this question. So first we expand the equation by using the trigonometric identity of $\sin (x-y)$. Then by opening all the brackets and adding and subtracting the terms, we are able to get the desired answer and choose the correct option.
Formula Used:
In this question, we use the trigonometric identity which is described as below:-
$\sin (x-y)=\sin x\cos y-\cos x\sin y$
Complete step- by- step Solution:
Given that $\cos \alpha .\sin (\beta -\gamma )+\cos \beta .\sin (\gamma -\alpha )+\cos \gamma .\sin (\alpha -\beta )$……………………..(1)
We know the trigonometric identity
$\sin (x-y)=\sin x\cos y-\cos x\sin y$
then $\sin (\beta -\gamma )=(\sin \beta \cos \gamma -\sin \gamma \cos \beta )$
and $\sin (\gamma -\alpha )=(\sin \gamma \cos \alpha -\sin \alpha \cos \gamma )$
and $\sin (\alpha -\beta )=(\sin \alpha \cos \beta -\sin \beta \cos \alpha )$
Put the above identity in equation (1), we get
$\cos \alpha (\sin \beta \cos \gamma -\sin \gamma \cos \beta )+\cos \beta (sin\gamma \cos \alpha -\sin \alpha \cos \gamma )+\cos \gamma (\sin \alpha \cos \beta -\sin \beta \cos \alpha )$
Now by opening the brackets of the above equation, we get
$\cos \alpha \sin \beta \cos \gamma -\cos \alpha \sin \gamma \cos \beta +\cos \beta sin\gamma \cos \alpha -\cos \beta \sin \alpha \cos \gamma +\cos \gamma \sin \alpha \cos \beta -\cos \gamma \sin \beta \cos \alpha $
We see in the above equations, there are two similar terms with opposite signs. So they cancel each other.
Therefore, by cancelling all the similar terms with opposite signs, we get
$\cos \alpha .\sin (\beta -\gamma )+\cos \beta .\sin (\gamma -\alpha )+\cos \gamma .\sin (\alpha -\beta )$ = 0
Thus, Option (A) is correct.
Note: In these type of questions, students made mistake that they started solving the whole equation at one time. By solving the equation and putting the identities at one time makes us confused and we are not able to solve the question completely or we take extra time. By solving the equations in small parts and then combining them makes the question easy to solve and we solve it in lesser time.
Formula Used:
In this question, we use the trigonometric identity which is described as below:-
$\sin (x-y)=\sin x\cos y-\cos x\sin y$
Complete step- by- step Solution:
Given that $\cos \alpha .\sin (\beta -\gamma )+\cos \beta .\sin (\gamma -\alpha )+\cos \gamma .\sin (\alpha -\beta )$……………………..(1)
We know the trigonometric identity
$\sin (x-y)=\sin x\cos y-\cos x\sin y$
then $\sin (\beta -\gamma )=(\sin \beta \cos \gamma -\sin \gamma \cos \beta )$
and $\sin (\gamma -\alpha )=(\sin \gamma \cos \alpha -\sin \alpha \cos \gamma )$
and $\sin (\alpha -\beta )=(\sin \alpha \cos \beta -\sin \beta \cos \alpha )$
Put the above identity in equation (1), we get
$\cos \alpha (\sin \beta \cos \gamma -\sin \gamma \cos \beta )+\cos \beta (sin\gamma \cos \alpha -\sin \alpha \cos \gamma )+\cos \gamma (\sin \alpha \cos \beta -\sin \beta \cos \alpha )$
Now by opening the brackets of the above equation, we get
$\cos \alpha \sin \beta \cos \gamma -\cos \alpha \sin \gamma \cos \beta +\cos \beta sin\gamma \cos \alpha -\cos \beta \sin \alpha \cos \gamma +\cos \gamma \sin \alpha \cos \beta -\cos \gamma \sin \beta \cos \alpha $
We see in the above equations, there are two similar terms with opposite signs. So they cancel each other.
Therefore, by cancelling all the similar terms with opposite signs, we get
$\cos \alpha .\sin (\beta -\gamma )+\cos \beta .\sin (\gamma -\alpha )+\cos \gamma .\sin (\alpha -\beta )$ = 0
Thus, Option (A) is correct.
Note: In these type of questions, students made mistake that they started solving the whole equation at one time. By solving the equation and putting the identities at one time makes us confused and we are not able to solve the question completely or we take extra time. By solving the equations in small parts and then combining them makes the question easy to solve and we solve it in lesser time.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Physics Average Value and RMS Value JEE Main 2025

JEE Main Chemistry Question Paper with Answer Keys and Solutions

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations
