
A standing wave is formed by the superposition of two waves travelling in opposite directions. The transverse displacement is given by
$y\left( {x,t} \right) = 0.5\sin \left( {\dfrac{{5\pi }}{4}x} \right)\cos \left( {200\pi t} \right)$
What is the speed of the travelling wave moving in the positive $x$ direction?
($x$ and $t$ are in meter and second, respectively)
(A) $120m/s$
(B) $180m/s$
(C) $90m/s$
(D) $160m/s$
Answer
139.5k+ views
Hint: First compare the equation given in the question with the general standing wave equation generated due to superposition of two waves travelling in opposite directions. We can get the value of angular frequency and propagation constant from here. Then using these two values, calculate the velocity of the wave.
Formulas used:
$v = \dfrac{\omega }{k}$ where $v$ is the velocity of the wave, $w$is its angular frequency and $k$ is its propagation constant.
Complete step by step answer
Standing or stationary waves can be generated in two ways:
1. By moving the medium in a direction opposite to the wave.
2. By the superposition of two waves with equal frequency travelling in opposite directions.
In this question, the standing wave is generated due to the superposition of two waves.
Let us consider two waves travelling in positive $x$ direction and negative $x$ direction represented by the equations
${y_1} = a\sin \left( {kx - \omega t} \right)$ and ${y_2} = a\sin \left( {kx + \omega t} \right)$
Where $a$ is the amplitude of the waves, $k$is the propagation constant and $w$ is the angular velocity.
By the principle of superposition the resultant standing wave is given by,
$y = {y_1} + {y_2}$
$
\Rightarrow y = a\left[ {\sin \left( {kx - \omega t} \right) + \sin \left( {kx + \omega t} \right)} \right] \\
\Rightarrow y = a\left[ {\sin kx\cos \omega t - \cos kx\sin \omega t + \sin kx\cos \omega t + \cos kx\sin \omega t} \right] \\
\Rightarrow y = 2a\sin kx\cos \omega t \\
\Rightarrow y = A\sin kx\cos \omega t \\
$
Comparing this equation with the equation given in the question we have,
$k = \dfrac{{5\pi }}{4}$ and $\omega = 200\pi $
Now velocity of a wave is given by the formula, $v = \dfrac{\omega }{k}$
So, $v = \dfrac{{200\pi }}{{\dfrac{{5\pi }}{4}}} = \dfrac{{200\pi \times 4}}{{5\pi }} = 160m/s$
Therefore, the speed of the travelling wave moving in positive $x$ direction is $160m/s$
So, the correct option is D.
Note: An example of standing wave formation is in the open ocean formed by waves with the same wave period moving in opposite directions. These may form near storm centres, or from reflection of a swell at the shore.
Formulas used:
$v = \dfrac{\omega }{k}$ where $v$ is the velocity of the wave, $w$is its angular frequency and $k$ is its propagation constant.
Complete step by step answer
Standing or stationary waves can be generated in two ways:
1. By moving the medium in a direction opposite to the wave.
2. By the superposition of two waves with equal frequency travelling in opposite directions.
In this question, the standing wave is generated due to the superposition of two waves.
Let us consider two waves travelling in positive $x$ direction and negative $x$ direction represented by the equations
${y_1} = a\sin \left( {kx - \omega t} \right)$ and ${y_2} = a\sin \left( {kx + \omega t} \right)$
Where $a$ is the amplitude of the waves, $k$is the propagation constant and $w$ is the angular velocity.
By the principle of superposition the resultant standing wave is given by,
$y = {y_1} + {y_2}$
$
\Rightarrow y = a\left[ {\sin \left( {kx - \omega t} \right) + \sin \left( {kx + \omega t} \right)} \right] \\
\Rightarrow y = a\left[ {\sin kx\cos \omega t - \cos kx\sin \omega t + \sin kx\cos \omega t + \cos kx\sin \omega t} \right] \\
\Rightarrow y = 2a\sin kx\cos \omega t \\
\Rightarrow y = A\sin kx\cos \omega t \\
$
Comparing this equation with the equation given in the question we have,
$k = \dfrac{{5\pi }}{4}$ and $\omega = 200\pi $
Now velocity of a wave is given by the formula, $v = \dfrac{\omega }{k}$
So, $v = \dfrac{{200\pi }}{{\dfrac{{5\pi }}{4}}} = \dfrac{{200\pi \times 4}}{{5\pi }} = 160m/s$
Therefore, the speed of the travelling wave moving in positive $x$ direction is $160m/s$
So, the correct option is D.
Note: An example of standing wave formation is in the open ocean formed by waves with the same wave period moving in opposite directions. These may form near storm centres, or from reflection of a swell at the shore.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
