Answer
Verified
114.6k+ views
Hint: A semiconductor material has an electrical conductivity which lies between that of a conductor and an insulator. Its resistivity falls as its temperature rises; metals are the opposite Semiconductors are employed in the manufacture of various kinds of electronic devices, including diodes, transistors, and integrated circuits.Such gadgets have discovered wide application in light of their minimization, dependability, power effectiveness, and ease.
Formula used:
\[\sigma = {n_e}e{\mu _n} + {n_p}e{\mu _p}\]
Complete step by step solution:
We know that the Total conductivity of semiconductor is given by
\[\sigma = {n_e}e{\mu _n} + {n_p}e{\mu _p}\]
This shows that the conductivity depends upon electrons and hole concentration and their mobilities.
In this equation $e$ is common after taking it common the equation becomes
\[\sigma = e\left( {{n_e}{\mu _n} + {n_p}{\mu _p}} \right)\]
We know that for an intrinsic semiconductor
\[{n_e}{n_p} = {n^2}\]
Or it can also be written as
\[{n_e} = \dfrac{{{n^2}}}{{{n_p}}}\]
Now we have to substitute the value of \[{n_e}\]in the total conductivity equation
Hence \[\sigma = e\left[ {\dfrac{{n_i^2}}{{{n_p}}}{\mu _n} + {n_p}{\mu _p}} \right]......\left( i \right)\]
If $\sigma $is minimum then the value of $\dfrac{{d\sigma }}{{d{n_p}}}$is $0$
Differentiating (i) with respect to${n_p}$, we get
\[\dfrac{{d\sigma }}{{d{n_p}}} = e\left[ { - \dfrac{{n_i^2}}{{n_p^2}}{\mu _n} + {\mu _p}} \right] = 0\]
Or the equation can be written as
\[{\mu _p} = \dfrac{{n_i^2}}{{n_p^2}}\mu {}_n\]
Therefore the above equation can be written as
\[n_p^2 = n_i^2\dfrac{{\mu {}_n}}{{{\mu _p}}}\]
Then the equation can be written as
\[{n_p} = \sqrt {n_i^2} \times \sqrt {\dfrac{{\mu {}_n}}{{{\mu _p}}}} \]
Here square and square root get cancel then the equation become
\[{n_p} = {n_i}\sqrt {\dfrac{{\mu {}_n}}{{{\mu _p}}}} \]
Hence the correct answer is option (A)
Note In strong state material science, the electron portability portrays how rapidly an electron can travel through a metal or semiconductor when pulled by an electric field. Hole concentration refers to the free electrons and holes. They carry the charges (electron negative and hole positive), and are responsible for electrical current in the semiconductor. Concentration of electrons. (=$n$) and hole (=$p$) is measured in the unit of $cm$ . The electron mobility is greater than the whole mobility.
Formula used:
\[\sigma = {n_e}e{\mu _n} + {n_p}e{\mu _p}\]
Complete step by step solution:
We know that the Total conductivity of semiconductor is given by
\[\sigma = {n_e}e{\mu _n} + {n_p}e{\mu _p}\]
This shows that the conductivity depends upon electrons and hole concentration and their mobilities.
In this equation $e$ is common after taking it common the equation becomes
\[\sigma = e\left( {{n_e}{\mu _n} + {n_p}{\mu _p}} \right)\]
We know that for an intrinsic semiconductor
\[{n_e}{n_p} = {n^2}\]
Or it can also be written as
\[{n_e} = \dfrac{{{n^2}}}{{{n_p}}}\]
Now we have to substitute the value of \[{n_e}\]in the total conductivity equation
Hence \[\sigma = e\left[ {\dfrac{{n_i^2}}{{{n_p}}}{\mu _n} + {n_p}{\mu _p}} \right]......\left( i \right)\]
If $\sigma $is minimum then the value of $\dfrac{{d\sigma }}{{d{n_p}}}$is $0$
Differentiating (i) with respect to${n_p}$, we get
\[\dfrac{{d\sigma }}{{d{n_p}}} = e\left[ { - \dfrac{{n_i^2}}{{n_p^2}}{\mu _n} + {\mu _p}} \right] = 0\]
Or the equation can be written as
\[{\mu _p} = \dfrac{{n_i^2}}{{n_p^2}}\mu {}_n\]
Therefore the above equation can be written as
\[n_p^2 = n_i^2\dfrac{{\mu {}_n}}{{{\mu _p}}}\]
Then the equation can be written as
\[{n_p} = \sqrt {n_i^2} \times \sqrt {\dfrac{{\mu {}_n}}{{{\mu _p}}}} \]
Here square and square root get cancel then the equation become
\[{n_p} = {n_i}\sqrt {\dfrac{{\mu {}_n}}{{{\mu _p}}}} \]
Hence the correct answer is option (A)
Note In strong state material science, the electron portability portrays how rapidly an electron can travel through a metal or semiconductor when pulled by an electric field. Hole concentration refers to the free electrons and holes. They carry the charges (electron negative and hole positive), and are responsible for electrical current in the semiconductor. Concentration of electrons. (=$n$) and hole (=$p$) is measured in the unit of $cm$ . The electron mobility is greater than the whole mobility.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
Electric field due to uniformly charged sphere class 12 physics JEE_Main