
A nucleus of mass $m + \Delta m$ is at rest and decays into two daughter nuclei of equal mass each
$\dfrac{M}{2}$. The speed of light is $c$. The speed of daughter nuclei is
a. $c\dfrac{{\Delta m}}{{M + \Delta m}}$
b. $c\sqrt {\dfrac{{2\Delta m}}{M}} $
C. $c\sqrt {\dfrac{{\Delta m}}{M}} $
d. $c\sqrt {\dfrac{{\Delta m}}{{M + \Delta m}}} $
Answer
233.1k+ views
Hint: In this question, first use the law of conservation of momentum and then find the velocity of the daughter nuclei is the same. Then find the total kinetic energy of the two daughter nuclei and mass defect and then find the velocity of the two daughter nuclei.
Complete step by step answer:
A nucleus decays into two parts and the mass of each nucleus is $\dfrac{M}{2}$. The mass of the parent nucleus is $M + \Delta m$ .
Let us assume that the speed of daughter nuclei is ${V_1}$ and ${V_2}$ respectively.
Hence conservation of momentum, $\dfrac{M}{2}{V_1} = \dfrac{M}{2}{V_2} \Rightarrow {V_1} = {V_2}$
Now the mass defect is $M + \Delta m - \left( {\dfrac{M}{2} + \dfrac{M}{2}} \right) = \Delta m$
As the product of mass defect and the square of the speed of light is the total kinetic energy.
So, the kinetic energy of the two daughter nuclei is ${E_1} = \dfrac{1}{2}.\dfrac{M}{2}.{V_1}^2$ and ${E_2} = \dfrac{1}{2}.\dfrac{M}{2}.{V_2}^2$
Hence the total kinetic energy of the two daughter nuclei is ${E_1} + {E_2} = \dfrac{1}{2}.\dfrac{M}{2}.{V_1}^2 + \dfrac{1}{2}.\dfrac{M}{2}.{V_2}^2$
As the velocity of the two daughter nuclei is same ${V_1} = {V_2}$
Thus, the total kinetic energy of the two daughter nuclei is $\dfrac{M}{2}{V_1}^2$ .
$ \Rightarrow \Delta m{c^2} = \dfrac{M}{2}{V_1}^2$
$\therefore {V_1} = c\sqrt {\dfrac{{2\Delta m}}{M}} $
The speed of the two daughter nuclei is $c\sqrt {\dfrac{{2\Delta m}}{M}} $.
Hence option (b) is the correct answer.
Note: As we know that the law of conservation of momentum states that in an isolated system, when the two objects collide with each other the total momentum of two objects before the collision is equal to the total momentum after the collision. Momentum is neither destroyed nor created; it transforms into one form to another.
Complete step by step answer:
A nucleus decays into two parts and the mass of each nucleus is $\dfrac{M}{2}$. The mass of the parent nucleus is $M + \Delta m$ .
Let us assume that the speed of daughter nuclei is ${V_1}$ and ${V_2}$ respectively.
Hence conservation of momentum, $\dfrac{M}{2}{V_1} = \dfrac{M}{2}{V_2} \Rightarrow {V_1} = {V_2}$
Now the mass defect is $M + \Delta m - \left( {\dfrac{M}{2} + \dfrac{M}{2}} \right) = \Delta m$
As the product of mass defect and the square of the speed of light is the total kinetic energy.
So, the kinetic energy of the two daughter nuclei is ${E_1} = \dfrac{1}{2}.\dfrac{M}{2}.{V_1}^2$ and ${E_2} = \dfrac{1}{2}.\dfrac{M}{2}.{V_2}^2$
Hence the total kinetic energy of the two daughter nuclei is ${E_1} + {E_2} = \dfrac{1}{2}.\dfrac{M}{2}.{V_1}^2 + \dfrac{1}{2}.\dfrac{M}{2}.{V_2}^2$
As the velocity of the two daughter nuclei is same ${V_1} = {V_2}$
Thus, the total kinetic energy of the two daughter nuclei is $\dfrac{M}{2}{V_1}^2$ .
$ \Rightarrow \Delta m{c^2} = \dfrac{M}{2}{V_1}^2$
$\therefore {V_1} = c\sqrt {\dfrac{{2\Delta m}}{M}} $
The speed of the two daughter nuclei is $c\sqrt {\dfrac{{2\Delta m}}{M}} $.
Hence option (b) is the correct answer.
Note: As we know that the law of conservation of momentum states that in an isolated system, when the two objects collide with each other the total momentum of two objects before the collision is equal to the total momentum after the collision. Momentum is neither destroyed nor created; it transforms into one form to another.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

