Answer
Verified
100.5k+ views
Hint: This is the case in which a type of thermodynamic process is taking place. An adiabatic process is the one in which heat is not exchanged from surroundings during expansion or compression.
Formula Used:
The adiabatic equation is written by using following equation:
\[P{V^\gamma } = \text{constant}\]……(i)
Where P is the pressure of the system, V is the volume of the system and \[\gamma \] is the adiabatic index.
The specific heat capacity for an adiabatic process is given by:
\[\dfrac{{{C_p}}}{{{C_v}}} = \gamma \]
where, \[{C_p}\] is the specific heat at constant pressure and \[{C_v}\] is the specific heat at constant volume.
Complete step by step solution:
Given that \[\dfrac{{{C_p}}}{{{C_v}}} = \dfrac{5}{3}\]
or, \[\gamma = \dfrac{5}{3}\]
Since in an adiabatic process, there is no exchange, so equation (i) can be written as:
\[{P_1}V_1^\gamma = {P_2}V_2^\gamma \]
\[\Rightarrow \dfrac{{{P_2}}}{{{P_1}}} = {(\dfrac{{{V_1}}}{{{V_2}}})^{\dfrac{5}{3}}}\]
Given that gas is compressed \[\dfrac{1}{8}\] of its initial volume, the above equation can be written as
\[\dfrac{{{P_2}}}{{{P_1}}} = {(\dfrac{8}{1})^{\dfrac{5}{3}}}\]
\[\therefore \dfrac{{{P_2}}}{{{P_1}}} = {(8)^{\dfrac{5}{3}}} = 32\]
Therefore, the ratio of its final pressure to initial pressure is 32.
Hence, Option A is the correct answer.
Note: An adiabatic process should be carried out quickly, so that the heat can be exchanged with the surroundings in enough time. Also, the system in which the adiabatic process is to be conducted should be properly and completely insulated from its surroundings. Otherwise, the adiabatic process can not take place. Since, the system is completely isolated, so there will be no pressure from the surroundings and hence work done in an adiabatic process will be zero. As a result, there will be zero change in internal energy and change in the system will be in the form of work only.
Formula Used:
The adiabatic equation is written by using following equation:
\[P{V^\gamma } = \text{constant}\]……(i)
Where P is the pressure of the system, V is the volume of the system and \[\gamma \] is the adiabatic index.
The specific heat capacity for an adiabatic process is given by:
\[\dfrac{{{C_p}}}{{{C_v}}} = \gamma \]
where, \[{C_p}\] is the specific heat at constant pressure and \[{C_v}\] is the specific heat at constant volume.
Complete step by step solution:
Given that \[\dfrac{{{C_p}}}{{{C_v}}} = \dfrac{5}{3}\]
or, \[\gamma = \dfrac{5}{3}\]
Since in an adiabatic process, there is no exchange, so equation (i) can be written as:
\[{P_1}V_1^\gamma = {P_2}V_2^\gamma \]
\[\Rightarrow \dfrac{{{P_2}}}{{{P_1}}} = {(\dfrac{{{V_1}}}{{{V_2}}})^{\dfrac{5}{3}}}\]
Given that gas is compressed \[\dfrac{1}{8}\] of its initial volume, the above equation can be written as
\[\dfrac{{{P_2}}}{{{P_1}}} = {(\dfrac{8}{1})^{\dfrac{5}{3}}}\]
\[\therefore \dfrac{{{P_2}}}{{{P_1}}} = {(8)^{\dfrac{5}{3}}} = 32\]
Therefore, the ratio of its final pressure to initial pressure is 32.
Hence, Option A is the correct answer.
Note: An adiabatic process should be carried out quickly, so that the heat can be exchanged with the surroundings in enough time. Also, the system in which the adiabatic process is to be conducted should be properly and completely insulated from its surroundings. Otherwise, the adiabatic process can not take place. Since, the system is completely isolated, so there will be no pressure from the surroundings and hence work done in an adiabatic process will be zero. As a result, there will be zero change in internal energy and change in the system will be in the form of work only.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main