Answer
Verified
114.6k+ views
Hint: This is the case in which a type of thermodynamic process is taking place. An adiabatic process is the one in which heat is not exchanged from surroundings during expansion or compression.
Formula Used:
The adiabatic equation is written by using following equation:
\[P{V^\gamma } = \text{constant}\]……(i)
Where P is the pressure of the system, V is the volume of the system and \[\gamma \] is the adiabatic index.
The specific heat capacity for an adiabatic process is given by:
\[\dfrac{{{C_p}}}{{{C_v}}} = \gamma \]
where, \[{C_p}\] is the specific heat at constant pressure and \[{C_v}\] is the specific heat at constant volume.
Complete step by step solution:
Given that \[\dfrac{{{C_p}}}{{{C_v}}} = \dfrac{5}{3}\]
or, \[\gamma = \dfrac{5}{3}\]
Since in an adiabatic process, there is no exchange, so equation (i) can be written as:
\[{P_1}V_1^\gamma = {P_2}V_2^\gamma \]
\[\Rightarrow \dfrac{{{P_2}}}{{{P_1}}} = {(\dfrac{{{V_1}}}{{{V_2}}})^{\dfrac{5}{3}}}\]
Given that gas is compressed \[\dfrac{1}{8}\] of its initial volume, the above equation can be written as
\[\dfrac{{{P_2}}}{{{P_1}}} = {(\dfrac{8}{1})^{\dfrac{5}{3}}}\]
\[\therefore \dfrac{{{P_2}}}{{{P_1}}} = {(8)^{\dfrac{5}{3}}} = 32\]
Therefore, the ratio of its final pressure to initial pressure is 32.
Hence, Option A is the correct answer.
Note: An adiabatic process should be carried out quickly, so that the heat can be exchanged with the surroundings in enough time. Also, the system in which the adiabatic process is to be conducted should be properly and completely insulated from its surroundings. Otherwise, the adiabatic process can not take place. Since, the system is completely isolated, so there will be no pressure from the surroundings and hence work done in an adiabatic process will be zero. As a result, there will be zero change in internal energy and change in the system will be in the form of work only.
Formula Used:
The adiabatic equation is written by using following equation:
\[P{V^\gamma } = \text{constant}\]……(i)
Where P is the pressure of the system, V is the volume of the system and \[\gamma \] is the adiabatic index.
The specific heat capacity for an adiabatic process is given by:
\[\dfrac{{{C_p}}}{{{C_v}}} = \gamma \]
where, \[{C_p}\] is the specific heat at constant pressure and \[{C_v}\] is the specific heat at constant volume.
Complete step by step solution:
Given that \[\dfrac{{{C_p}}}{{{C_v}}} = \dfrac{5}{3}\]
or, \[\gamma = \dfrac{5}{3}\]
Since in an adiabatic process, there is no exchange, so equation (i) can be written as:
\[{P_1}V_1^\gamma = {P_2}V_2^\gamma \]
\[\Rightarrow \dfrac{{{P_2}}}{{{P_1}}} = {(\dfrac{{{V_1}}}{{{V_2}}})^{\dfrac{5}{3}}}\]
Given that gas is compressed \[\dfrac{1}{8}\] of its initial volume, the above equation can be written as
\[\dfrac{{{P_2}}}{{{P_1}}} = {(\dfrac{8}{1})^{\dfrac{5}{3}}}\]
\[\therefore \dfrac{{{P_2}}}{{{P_1}}} = {(8)^{\dfrac{5}{3}}} = 32\]
Therefore, the ratio of its final pressure to initial pressure is 32.
Hence, Option A is the correct answer.
Note: An adiabatic process should be carried out quickly, so that the heat can be exchanged with the surroundings in enough time. Also, the system in which the adiabatic process is to be conducted should be properly and completely insulated from its surroundings. Otherwise, the adiabatic process can not take place. Since, the system is completely isolated, so there will be no pressure from the surroundings and hence work done in an adiabatic process will be zero. As a result, there will be zero change in internal energy and change in the system will be in the form of work only.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
How to find Oxidation Number - Important Concepts for JEE
Half-Life of Order Reactions - Important Concepts and Tips for JEE
Trending doubts
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Collision - Important Concepts and Tips for JEE
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Other Pages
Current Loop as Magnetic Dipole and Its Derivation for JEE
A particle performs SHM of amplitude A along a straight class 11 physics JEE_Main
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Keys & Solutions
JEE Main 2023 January 30 Shift 2 Question Paper with Answer Keys & Solutions
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion