
If \[z = {\sin ^{ - 1}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\] then find \[x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}}\].
A. \[\cot z\]
B. \[\dfrac{1}{2}\tan z\]
C. \[\dfrac{1}{2}\cot z\]
D. \[\tan z\]
Answer
231.9k+ views
Hint: First we will find reverse of inverse trigonometry. Then find the partial derivative of the equation with respect to \[x\] and \[y\]. Then calculate the value of \[x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}}\].
Formula used:
\[\dfrac{\partial }{{\partial x}}\left( {\sin x} \right) = \cos x\]
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{\partial u}}{{\partial x}} - u\dfrac{{\partial v}}{{\partial x}}}}{{{v^2}}}\]
Complete step by step solution:
Given equation is \[z = {\sin ^{ - 1}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\].
Apply the reverse formula of trigonometry inverse
\[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\] …….(i)
Calculate the partial derivative of equation (i) with respect to \[x\]
\[\cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{\partial }{{\partial x}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\]
Apply the quotient formula on the right side:
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\dfrac{\partial }{{\partial x}}\left( {x + y} \right) - \left( {x + y} \right)\dfrac{\partial }{{\partial x}}\left( {\sqrt x + \sqrt y } \right)}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right) \cdot 1 - \left( {x + y} \right) \cdot \dfrac{1}{{2\sqrt x }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Divide both sides by \[\cos z\].
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{\dfrac{{2\sqrt x \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt x }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt x \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2x + 2\sqrt {xy} - x - y}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{x + 2\sqrt {xy} - y}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\] ……..(ii)
Calculate the partial derivative of equation (i) with respect to \[y\]
\[\cos z\dfrac{{\partial z}}{{\partial y}} = \dfrac{\partial }{{\partial y}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\]
Apply the quotient formula on the right side:
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial y}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\dfrac{\partial }{{\partial y}}\left( {x + y} \right) - \left( {x + y} \right)\dfrac{\partial }{{\partial y}}\left( {\sqrt x + \sqrt y } \right)}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right) \cdot 1 - \left( {x + y} \right) \cdot \dfrac{1}{{2\sqrt y }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Divide both sides by \[\cos z\].
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{\dfrac{{2\sqrt y \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt y }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt y \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt {xy} + 2y - x - y}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{y + 2\sqrt {xy} - x}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]…..(iii)
Multiply \[x\] with equation (ii) and multiply \[y\] with equation (iii) and add them
\[x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{x\left( {x + 2\sqrt {xy} - y} \right)}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}} + \dfrac{1}{{\cos z}} \cdot \dfrac{{y\left( {y + 2\sqrt {xy} - x} \right)}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Take common \[\dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\] from the right side expression
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {\dfrac{{\sqrt x \cdot \sqrt x \left( {x + 2\sqrt {xy} - y} \right)}}{{\sqrt x }} + \dfrac{{\sqrt y \cdot \sqrt y \left( {y + 2\sqrt {xy} - x} \right)}}{{\sqrt y }}} \right]\]
Cancel out same terms from the numerator and denominator
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {\sqrt x \left( {x + 2\sqrt {xy} - y} \right) + \sqrt y \left( {y + 2\sqrt {xy} - x} \right)} \right]\]
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\sqrt x + 2x\sqrt y - y\sqrt x + y\sqrt y + 2y\sqrt x - x\sqrt y } \right]\]
Subtract like on the numerator
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\sqrt x + x\sqrt y + y\sqrt y + y\sqrt x } \right]\]
Apply factor method
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\left( {\sqrt x + \sqrt y } \right) + y\left( {\sqrt y + \sqrt x } \right)} \right]\]
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left( {\sqrt x + \sqrt y } \right)\left( {x + y} \right)\]
Cancel out \[\left( {\sqrt x + \sqrt y } \right)\] from the denominator and numerator from the right-side expression
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z}} \cdot \dfrac{{\left( {x + y} \right)}}{{\left( {\sqrt x + \sqrt y } \right)}}\]
From equation (i) we get \[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\]
Substitute \[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\] in the above equation
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z}} \cdot \sin z\]
We know that \[\dfrac{{\sin x}}{{\cos x}} = \tan x\].
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{2}\tan z\]
Hence option B is the correct option.
Note: Partial derivative is all most same as normal derivate. But in the partial derivative we consider only one variable and other variables are treated as constant. When we find the partial derivative \[\dfrac{\partial }{{\partial x}}\], then we consider \[x\] as variable and \[y\] as a constant.
Formula used:
\[\dfrac{\partial }{{\partial x}}\left( {\sin x} \right) = \cos x\]
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{\partial u}}{{\partial x}} - u\dfrac{{\partial v}}{{\partial x}}}}{{{v^2}}}\]
Complete step by step solution:
Given equation is \[z = {\sin ^{ - 1}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\].
Apply the reverse formula of trigonometry inverse
\[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\] …….(i)
Calculate the partial derivative of equation (i) with respect to \[x\]
\[\cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{\partial }{{\partial x}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\]
Apply the quotient formula on the right side:
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\dfrac{\partial }{{\partial x}}\left( {x + y} \right) - \left( {x + y} \right)\dfrac{\partial }{{\partial x}}\left( {\sqrt x + \sqrt y } \right)}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right) \cdot 1 - \left( {x + y} \right) \cdot \dfrac{1}{{2\sqrt x }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Divide both sides by \[\cos z\].
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{\dfrac{{2\sqrt x \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt x }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt x \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2x + 2\sqrt {xy} - x - y}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{x + 2\sqrt {xy} - y}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\] ……..(ii)
Calculate the partial derivative of equation (i) with respect to \[y\]
\[\cos z\dfrac{{\partial z}}{{\partial y}} = \dfrac{\partial }{{\partial y}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\]
Apply the quotient formula on the right side:
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial y}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\dfrac{\partial }{{\partial y}}\left( {x + y} \right) - \left( {x + y} \right)\dfrac{\partial }{{\partial y}}\left( {\sqrt x + \sqrt y } \right)}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right) \cdot 1 - \left( {x + y} \right) \cdot \dfrac{1}{{2\sqrt y }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Divide both sides by \[\cos z\].
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{\dfrac{{2\sqrt y \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt y }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt y \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt {xy} + 2y - x - y}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{y + 2\sqrt {xy} - x}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]…..(iii)
Multiply \[x\] with equation (ii) and multiply \[y\] with equation (iii) and add them
\[x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{x\left( {x + 2\sqrt {xy} - y} \right)}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}} + \dfrac{1}{{\cos z}} \cdot \dfrac{{y\left( {y + 2\sqrt {xy} - x} \right)}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Take common \[\dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\] from the right side expression
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {\dfrac{{\sqrt x \cdot \sqrt x \left( {x + 2\sqrt {xy} - y} \right)}}{{\sqrt x }} + \dfrac{{\sqrt y \cdot \sqrt y \left( {y + 2\sqrt {xy} - x} \right)}}{{\sqrt y }}} \right]\]
Cancel out same terms from the numerator and denominator
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {\sqrt x \left( {x + 2\sqrt {xy} - y} \right) + \sqrt y \left( {y + 2\sqrt {xy} - x} \right)} \right]\]
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\sqrt x + 2x\sqrt y - y\sqrt x + y\sqrt y + 2y\sqrt x - x\sqrt y } \right]\]
Subtract like on the numerator
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\sqrt x + x\sqrt y + y\sqrt y + y\sqrt x } \right]\]
Apply factor method
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\left( {\sqrt x + \sqrt y } \right) + y\left( {\sqrt y + \sqrt x } \right)} \right]\]
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left( {\sqrt x + \sqrt y } \right)\left( {x + y} \right)\]
Cancel out \[\left( {\sqrt x + \sqrt y } \right)\] from the denominator and numerator from the right-side expression
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z}} \cdot \dfrac{{\left( {x + y} \right)}}{{\left( {\sqrt x + \sqrt y } \right)}}\]
From equation (i) we get \[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\]
Substitute \[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\] in the above equation
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z}} \cdot \sin z\]
We know that \[\dfrac{{\sin x}}{{\cos x}} = \tan x\].
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{2}\tan z\]
Hence option B is the correct option.
Note: Partial derivative is all most same as normal derivate. But in the partial derivative we consider only one variable and other variables are treated as constant. When we find the partial derivative \[\dfrac{\partial }{{\partial x}}\], then we consider \[x\] as variable and \[y\] as a constant.
Recently Updated Pages
If u log dfracx2 + y2xy then find the value of xdfracpartial class 13 maths JEE_Advanced

If Fleft u right fleft xyz right be a homogeneous function class 13 maths JEE_Advanced

If u2 dfrac1left x2 + y2 + z2 right then show that class 13 maths JEE_Advanced

If u xy2tan 1left dfracyx right then what is the value class 13 maths JEE_Advanced

If u tan 1left dfracx3 + y3x y right then find x2dfracpartial class 13 maths JEE_Advanced

JEE Advanced 2026 Revision Notes for Chemistry Energetics - Free PDF Download

Trending doubts
Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

Test for Phenolic Group

JEE Advanced Syllabus 2026

Difference Between Line Voltage and Phase Voltage

JEE Advanced Cut Off 2024

Diffraction of Light - Young’s Single Slit Experiment

Other Pages
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Average and RMS Value in Electrical Circuits

