
If \[{u^2} = \dfrac{1}{{\left( {{x^2} + {y^2} + {z^2}} \right)}}\], then show that \[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 0\].
Answer
232.2k+ views
Hint: First, differentiate the given equation partially with respect to \[x\]. Again, differentiate the given equation partially with respect to \[x\] and calculate the second derivative. Follow these steps to calculate the second derivative of the given equation with respect to \[y\], and \[z\]. In the end, add the values of all three second-order derivatives and simplify the equation to reach the required answer.
Formula used:
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{1}{{{x^n}}}} \right) = - n{x^{ - n - 1}}\]
Product rule of differentiation: \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
Complete step by step solution:
The given equation is \[{u^2} = \dfrac{1}{{\left( {{x^2} + {y^2} + {z^2}} \right)}}\].
To prove: \[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 0\]
Take square root on the both sides of the above equation.
We get,
\[u = \dfrac{1}{{\sqrt {{x^2} + {y^2} + {z^2}} }}\]
Let’s differentiate the above equation partially with respect to the variable \[x\].
\[\dfrac{\partial }{{\partial x}}\left( u \right) = \dfrac{\partial }{{\partial x}}\left( {\dfrac{1}{{\sqrt {{x^2} + {y^2} + {z^2}} }}} \right)\]
Apply the exponent rule.
\[\dfrac{{\partial u}}{{\partial x}} = \dfrac{\partial }{{\partial x}}\left( {{{\left( {{x^2} + {y^2} + {z^2}} \right)}^{ - \dfrac{1}{2}}}} \right)\]
Apply the chain rule and \[\dfrac{\partial }{{\partial x}}\left( {\dfrac{1}{{{x^n}}}} \right) = - n{x^{ - n - 1}}\].
\[\dfrac{{\partial u}}{{\partial x}} = \dfrac{{ - 1}}{{2{{\left( {{x^2} + {y^2} + {z^2}} \right)}^{\dfrac{3}{2}}}}}\dfrac{\partial }{{\partial x}}\left( {{x^2} + {y^2} + {z^2}} \right)\]
\[ \Rightarrow \dfrac{{\partial u}}{{\partial x}} = \dfrac{{ - 1}}{2}\left( {\dfrac{1}{{{{\left( {{x^2} + {y^2} + {z^2}} \right)}^{\dfrac{3}{2}}}}}} \right)\left( {2x} \right)\]
\[ \Rightarrow \dfrac{{\partial u}}{{\partial x}} = - {\left( {{u^2}} \right)^{\dfrac{3}{2}}}\left( x \right)\]
\[ \Rightarrow \dfrac{{\partial u}}{{\partial x}} = - {u^3}x\]
Again, differentiate the above differential equation partially with respect to the variable \[x\].
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{{\partial u}}{{\partial x}}} \right) = \dfrac{\partial }{{\partial x}}\left( { - {u^3}x} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \dfrac{\partial }{{\partial x}}\left( {{u^3}x} \right)\]
Apply the product rule.
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3}\dfrac{\partial }{{\partial x}}\left( x \right) + x\dfrac{\partial }{{\partial x}}\left( {{u^3}} \right)} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3} + x\left( {3{u^2}} \right)\dfrac{{\partial u}}{{\partial x}}} \right)\]
Substitute \[\dfrac{{\partial u}}{{\partial x}} = - {u^3}x\] in the above equation.
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3} + x\left( {3{u^2}} \right)\left( { - {u^3}x} \right)} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3} - 3{x^2}{u^5}} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = 3{x^2}{u^5} - {u^3}\] \[.....\left( 1 \right)\]
Similarly, double differentiate the given equation with respect to the variables \[y\] and \[z\].
We get,
\[\dfrac{{{\partial ^2}u}}{{\partial {y^2}}} = 3{y^2}{u^5} - {u^3}\] \[.....\left( 2 \right)\]
And \[\dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{z^2}{u^5} - {u^3}\] \[.....\left( 3 \right)\]
Now add the equations \[\left( 1 \right)\], \[\left( 2 \right)\] and \[\left( 3 \right)\].
We get,
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{x^2}{u^5} - {u^3} + 3{y^2}{u^5} - {u^3} + 3{z^2}{u^5} - {u^3}\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{u^5}\left( {{x^2} + {y^2} + {z^2}} \right) - 3{u^3}\]
Resubstitute the value \[\left( {{x^2} + {y^2} + {z^2}} \right) = {u^{ - 2}}\] in the above equation.
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{u^5}\left( {{u^{ - 2}}} \right) - 3{u^3}\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{u^3} - 3{u^3}\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 0\]
Hence, proved.
Note: Students often get confused and directly apply the product rule without using the chain rule of differentiation.
The chain rule is used to take derivatives of composites of functions and this happens by chaining together their derivatives.
Chain rule: If \[F\left( x \right) = f\left( {g\left( x \right)} \right)\], then \[F'\left( x \right) = f'\left( {g\left( x \right)} \right) \cdot g'\left( x \right)\]
Formula used:
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{1}{{{x^n}}}} \right) = - n{x^{ - n - 1}}\]
Product rule of differentiation: \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
Complete step by step solution:
The given equation is \[{u^2} = \dfrac{1}{{\left( {{x^2} + {y^2} + {z^2}} \right)}}\].
To prove: \[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 0\]
Take square root on the both sides of the above equation.
We get,
\[u = \dfrac{1}{{\sqrt {{x^2} + {y^2} + {z^2}} }}\]
Let’s differentiate the above equation partially with respect to the variable \[x\].
\[\dfrac{\partial }{{\partial x}}\left( u \right) = \dfrac{\partial }{{\partial x}}\left( {\dfrac{1}{{\sqrt {{x^2} + {y^2} + {z^2}} }}} \right)\]
Apply the exponent rule.
\[\dfrac{{\partial u}}{{\partial x}} = \dfrac{\partial }{{\partial x}}\left( {{{\left( {{x^2} + {y^2} + {z^2}} \right)}^{ - \dfrac{1}{2}}}} \right)\]
Apply the chain rule and \[\dfrac{\partial }{{\partial x}}\left( {\dfrac{1}{{{x^n}}}} \right) = - n{x^{ - n - 1}}\].
\[\dfrac{{\partial u}}{{\partial x}} = \dfrac{{ - 1}}{{2{{\left( {{x^2} + {y^2} + {z^2}} \right)}^{\dfrac{3}{2}}}}}\dfrac{\partial }{{\partial x}}\left( {{x^2} + {y^2} + {z^2}} \right)\]
\[ \Rightarrow \dfrac{{\partial u}}{{\partial x}} = \dfrac{{ - 1}}{2}\left( {\dfrac{1}{{{{\left( {{x^2} + {y^2} + {z^2}} \right)}^{\dfrac{3}{2}}}}}} \right)\left( {2x} \right)\]
\[ \Rightarrow \dfrac{{\partial u}}{{\partial x}} = - {\left( {{u^2}} \right)^{\dfrac{3}{2}}}\left( x \right)\]
\[ \Rightarrow \dfrac{{\partial u}}{{\partial x}} = - {u^3}x\]
Again, differentiate the above differential equation partially with respect to the variable \[x\].
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{{\partial u}}{{\partial x}}} \right) = \dfrac{\partial }{{\partial x}}\left( { - {u^3}x} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \dfrac{\partial }{{\partial x}}\left( {{u^3}x} \right)\]
Apply the product rule.
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3}\dfrac{\partial }{{\partial x}}\left( x \right) + x\dfrac{\partial }{{\partial x}}\left( {{u^3}} \right)} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3} + x\left( {3{u^2}} \right)\dfrac{{\partial u}}{{\partial x}}} \right)\]
Substitute \[\dfrac{{\partial u}}{{\partial x}} = - {u^3}x\] in the above equation.
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3} + x\left( {3{u^2}} \right)\left( { - {u^3}x} \right)} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = - \left( {{u^3} - 3{x^2}{u^5}} \right)\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} = 3{x^2}{u^5} - {u^3}\] \[.....\left( 1 \right)\]
Similarly, double differentiate the given equation with respect to the variables \[y\] and \[z\].
We get,
\[\dfrac{{{\partial ^2}u}}{{\partial {y^2}}} = 3{y^2}{u^5} - {u^3}\] \[.....\left( 2 \right)\]
And \[\dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{z^2}{u^5} - {u^3}\] \[.....\left( 3 \right)\]
Now add the equations \[\left( 1 \right)\], \[\left( 2 \right)\] and \[\left( 3 \right)\].
We get,
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{x^2}{u^5} - {u^3} + 3{y^2}{u^5} - {u^3} + 3{z^2}{u^5} - {u^3}\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{u^5}\left( {{x^2} + {y^2} + {z^2}} \right) - 3{u^3}\]
Resubstitute the value \[\left( {{x^2} + {y^2} + {z^2}} \right) = {u^{ - 2}}\] in the above equation.
\[\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{u^5}\left( {{u^{ - 2}}} \right) - 3{u^3}\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 3{u^3} - 3{u^3}\]
\[ \Rightarrow \dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {z^2}}} = 0\]
Hence, proved.
Note: Students often get confused and directly apply the product rule without using the chain rule of differentiation.
The chain rule is used to take derivatives of composites of functions and this happens by chaining together their derivatives.
Chain rule: If \[F\left( x \right) = f\left( {g\left( x \right)} \right)\], then \[F'\left( x \right) = f'\left( {g\left( x \right)} \right) \cdot g'\left( x \right)\]
Recently Updated Pages
If u log dfracx2 + y2xy then find the value of xdfracpartial class 13 maths JEE_Advanced

If Fleft u right fleft xyz right be a homogeneous function class 13 maths JEE_Advanced

If u2 dfrac1left x2 + y2 + z2 right then show that class 13 maths JEE_Advanced

If u xy2tan 1left dfracyx right then what is the value class 13 maths JEE_Advanced

If u tan 1left dfracx3 + y3x y right then find x2dfracpartial class 13 maths JEE_Advanced

JEE Advanced 2026 Revision Notes for Chemistry Energetics - Free PDF Download

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

