CBSE Class 12 Maths Chapter-10 Important Questions - Free PDF Download
Free PDF download of Important Questions with solutions for CBSE Class 12 Maths Chapter 10 - Vector Algebra prepared by expert Maths teachers from latest edition of CBSE(NCERT) books. Register online for Maths tuition on Vedantu.com to score more marks in CBSE board examination.
Study Important Questions for Class 12 Maths Chapter 10 - Vector Algebra
Very Short Answer Questions (1 Mark)
1. What are the horizontal and vertical components of a vector \[\overrightarrow a \] of magnitude \[5\] making an angle of \[{150^ \circ }\] with the direction of x-axis?
Ans: The vector \[\overrightarrow a \] has a magnitude \[|\overrightarrow a | = 5\] units and makes an angle \[\theta = {150^ \circ }\] in the direction of the x-axis. Its horizontal and vertical components can be calculated as follows:
Horizontal component \[x = |\overrightarrow a | \cdot \cos \theta \]
\[ \Rightarrow x = 5 \cdot (\cos {150^ \circ })\]
\[ \Rightarrow x = 5 \cdot ( - \cos {30^ \circ })\]
\[ \Rightarrow x = 5 \cdot ( - \frac{{\sqrt 3 }}{2})\]
\[ \Rightarrow x = - \frac{{5\sqrt 3 }}{2}\]
Vertical component \[y = |\overrightarrow a | \cdot \sin \theta \]
\[ \Rightarrow y = 5 \cdot (\sin {150^ \circ })\]
\[ \Rightarrow y = 5 \cdot (\sin {30^ \circ })\]
\[ \Rightarrow y = 5 \cdot (\frac{1}{2})\]
\[ \Rightarrow y = \frac{5}{2}\]
2. What is \[a \in R\] such that \[|a\overrightarrow x | = 1\] , where \[\overrightarrow x = \hat i - 2\hat j + 2\hat k\] ?
Ans: We know that \[\overrightarrow x = \hat i - 2\hat j + 2\hat k\] , so we can calculate \[|\overrightarrow x |\] as:
\[|\overrightarrow x | = \sqrt {{1^2} + {{( - 2)}^2} + {2^2}} \]
\[|\overrightarrow x | = \sqrt {1 + 4 + 4} \]
\[|\overrightarrow x | = \sqrt 9 \]
\[|\overrightarrow x | = 3\] units
Now we have \[|a\overrightarrow x | = 1\] and \[|\overrightarrow x | = 3\].
\[ \Rightarrow |a(3)| = 1\]
\[ \Rightarrow |a| = \frac{1}{3}\]
\[ \Rightarrow a = \pm \frac{1}{3}\]
3. When is \[\mathbf{|\overrightarrow x + \overrightarrow y | = |\overrightarrow x | + |\overrightarrow y |}\] ?
Ans: The magnitude of sum of two vectors can be equal to sum of their individual magnitude if and only if the two vectors are parallel.
4. What is the area of a parallelogram whose sides are given by \[\mathbf{2\hat i - \hat j}\] and \[\mathbf{\hat i + 5\hat k}\] ?
Ans: Let a parallelogram with adjacent sides \[\overrightarrow a = 2\hat i - \hat j\] and \[\overrightarrow b = \hat i + 5\hat k\] have an area of \[\overrightarrow a \times \overrightarrow b \] . We calculate the value of \[\overrightarrow a \times \overrightarrow b \] as follows:
\[\overrightarrow a \times \overrightarrow b = \left( {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ 2&{ - 1}&0\\ 1&0&5 \end{array}} \right)\]
\[ \Rightarrow \overrightarrow a \times \overrightarrow b = \hat i( - 5) - \hat j(10) + \hat k(1)\]
\[ \Rightarrow \overrightarrow a \times \overrightarrow b = - 5\hat i - 10\hat j + \hat k\]
\[ \Rightarrow |\overrightarrow a \times \overrightarrow b | = \sqrt {{{( - 5)}^2} + {{( - 10)}^2} + {1^2}} \]
\[ \Rightarrow |\overrightarrow a \times \overrightarrow b | = \sqrt {25 + 100 + 1} \]
\[ \Rightarrow |\overrightarrow a \times \overrightarrow b | = \sqrt {126} \] units
5. What is the angle between \[\mathbf{\overrightarrow a} \] and \[\mathbf{\overrightarrow b} \] if \[\mathbf{\overrightarrow a \cdot \overrightarrow b = 3}\] and \[\mathbf{|\overrightarrow a \times \overrightarrow b | = 3\sqrt 3} \] ?
Ans: We know that \[\overrightarrow a \cdot \overrightarrow b = |\overrightarrow a ||\overrightarrow b |\cos \theta \] and \[\overrightarrow a \cdot \overrightarrow b = 3\] is given.
So, \[|\overrightarrow a ||\overrightarrow b |\cos \theta = 3\] .
\[ \Rightarrow \cos \theta = \frac{3}{{|\overrightarrow a ||\overrightarrow b |}}\] ……(1)
Further, \[\overrightarrow a \times \overrightarrow b = |\overrightarrow a ||\overrightarrow b |\sin \theta \] and \[\overrightarrow a \times \overrightarrow b = 3\sqrt 3 \] .
So, \[|\overrightarrow a ||\overrightarrow b |\sin \theta = 3\sqrt 3 \]
\[ \Rightarrow \frac{{\sin \theta }}{{\sqrt 3 }} = \frac{3}{{|\overrightarrow a ||\overrightarrow b |}}\] ……(2)
From (1) and (2) we get:
\[\frac{{\sin \theta }}{{\sqrt 3 }} = \cos \theta \]
\[ \Rightarrow \frac{{\sin \theta }}{{\cos \theta }} = \sqrt 3 \]
\[ \Rightarrow \tan \theta = \sqrt 3 \]
\[ \Rightarrow \theta = \frac{\pi }{3}\]
6. Write a unit vector which makes an angle of \[\frac{\pi }{4}\] with x-axis and \[\frac{\pi }{3}\] with z-axis and an acute angle with y-axis.
Ans: It is given that \[\alpha = \frac{\pi }{4}\] is the angle that the vector makes with x-axis, \[\gamma = \frac{\pi }{3}\] with z-axis and an acute angle \[\beta \] with y-axis.
We know that \[{\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1\]
So, \[{\cos ^2}\frac{\pi }{4} + {\cos ^2}\beta + {\cos ^2}\frac{\pi }{3} = 1\]
\[ \Rightarrow {\left( {\frac{1}{{\sqrt 2 }}} \right)^2} + {\cos ^2}\beta + {(\frac{1}{2})^2} = 1\]
\[ \Rightarrow \frac{1}{2} + {\cos ^2}\beta + \frac{1}{4} = 1\]
\[ \Rightarrow {\cos ^2}\beta = \frac{1}{4}\]
\[ \Rightarrow \cos \beta = \pm \frac{1}{2}\]
\[ \Rightarrow \beta = \frac{\pi }{3} since \beta is acute angle \]
We can find the unit vector making the above angles with the axes as follows:
\[\hat a = \cos \alpha \cdot \hat i + \cos \beta \cdot \hat j + \cos \gamma \cdot \hat k\]
\[ \Rightarrow \hat a = \frac{1}{2}\hat i + \frac{1}{2}\hat j + \frac{1}{2}\hat k\]
7. If A is the point (4,5) and vector \[\mathbf{\overrightarrow {AB} }\] has components \[2\] and \[6\] along x-axis and y-axis respectively then write point B.
Ans: Since point A is \[(4,5)\] , we can write \[\overrightarrow {OA} = 4\hat i + 5\hat j\] . Further, it is given that \[\overrightarrow {AB} = 2\hat i + 6\hat j\] .
Let \[\overrightarrow {OB} = x\hat i + y\hat j\] .
Now, \[\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} \] .
\[ \Rightarrow (2\hat i + 6\hat j) = (x\hat i + y\hat j) - (4\hat i + 5\hat j)\]
\[ \Rightarrow (x\hat i + y\hat j) = (2\hat i + 6\hat j) + (4\hat i + 5\hat j)\]
\[ \Rightarrow x\hat i + y\hat j = 6\hat i + 11\hat j\]
Hence, point B is \[(6,11)\] .
8. What is the point of trisection of PQ nearer to P if positions of P and Q are \[ \mathbf{3\hat i + 3\hat j - 4\hat k}\] and \[\mathbf{9\hat i + 8\hat j - 10\hat k}\] respectively?
Ans: It is given that \[\overrightarrow {OP} = 3\hat i + 3\hat j - 4\hat k\] and \[\overrightarrow {OQ} = 9\hat i + 8\hat j - 10\hat k\] .
Now, \[\overrightarrow {PQ} = \overrightarrow {OQ} - \overrightarrow {OP} \] .
\[ \Rightarrow \overrightarrow {PQ} = (9\hat i + 8\hat j - 10\hat k) - (3\hat i + 3\hat j - 4\hat k)\]
\[ \Rightarrow \overrightarrow {PQ} = 6\hat i + 5\hat j - 6\hat k\]
Let the point of trisection nearer to P be A.
So, \[3\overrightarrow {PA} = \overrightarrow {PQ} \]
\[ \Rightarrow \overrightarrow {PA} = \frac{{\overrightarrow {PQ} }}{3}\]
\[ \Rightarrow \overrightarrow {PA} = \frac{{6\hat i + 5\hat j - 6\hat k}}{3}\]
\[ \Rightarrow \overrightarrow {PA} = 2\hat i + \frac{5}{2}\hat j - 2\hat k\]
Hence, the point of trisection of \[\overrightarrow {PQ} \] nearer to P is \[(2,\frac{5}{2}, - 2)\] .
9. Write the vector in the direction of \[\mathbf{2\hat i + 3\hat j + 2\sqrt 3 \hat k}\] , whose magnitude is \[\mathbf{10}\] units.
Ans: Let the vector \[\overrightarrow a \] be \[2\hat i + 3\hat j + 2\sqrt 3 \hat k\] .
The unit vector in its direction will hence be-
\[\hat a = \frac{{2\hat i + 3\hat j + 2\sqrt 3 \hat k}}{{\sqrt {{2^2} + {3^2} + {{(2\sqrt 3 )}^2}} }}\]
\[ \Rightarrow \hat a = \frac{{2\hat i + 3\hat j + 2\sqrt 3 \hat k}}{{\sqrt {4 + 9 + 12} }}\]
\[\hat a = \frac{{2\hat i + 3\hat j + 2\sqrt 3 \hat k}}{{\sqrt {25} }}\]
\[\hat a = \frac{{2\hat i + 3\hat j + 2\sqrt 3 \hat k}}{5}\]
A vector \[\overrightarrow x \] in the direction of \[\overrightarrow a \] and with a magnitude \[10\] units will be-
\[\overrightarrow x = \frac{{2\hat i + 3\hat j + 2\sqrt 3 \hat k}}{5} \times 10\]
\[ \Rightarrow \overrightarrow x = 2(2\hat i + 3\hat j + 2\sqrt 3 \hat k)\]
\[ \Rightarrow \overrightarrow x = 4\hat i + 6\hat j + 4\sqrt 3 \hat k\]
10. What are the direction cosines of a vector equiangular with coordinate
axes?
Ans: Let all the direction cosines of the vector be equal to \[\alpha \] .
Therefore, \[l = m = n = \cos \alpha \] .
We know that \[{l^2} + {m^2} + {n^2} = 1\] .
\[ \Rightarrow {\cos ^2}\alpha + {\cos ^2}\alpha + {\cos ^2}\alpha = 1\]
\[ \Rightarrow 3{\cos ^2}\alpha = 1\]
\[ \Rightarrow {\cos ^2}\alpha = \frac{1}{3}\]
\[ \Rightarrow \cos \alpha = \pm \frac{1}{{\sqrt 3 }}\]
Thus, direction cosines of the vector which is equiangular to all three coordinate axes are \[ \pm \frac{1}{{\sqrt 3 }}\] , \[ \pm \frac{1}{{\sqrt 3 }}\] and \[ \pm \frac{1}{{\sqrt 3 }}\] .
11. What is the angle which the vector \[\mathbf{3\hat i - 6\hat j + 2\hat k}\] makes with the x-axis?
Ans: We have the vector \[\overrightarrow v = 3\hat i - 6\hat j + 2\hat k\] .
To determine the angle it makes with the x-axis, we calculate the direction cosine with the required axis. So, we need to find \[l = \frac{a}{{|\overrightarrow v |}}\] , where \[l\] is the direction cosine with x-axis and \[a\] is the component corresponding to it.
Now, \[l = \frac{a}{{|\overrightarrow v |}}\]
\[ \Rightarrow l = \frac{3}{{\sqrt {{3^2} + {{( - 6)}^2} + {2^2}} }}\]
\[ \Rightarrow l = \frac{3}{{\sqrt {9 + 36 + 4} }}\]
\[ \Rightarrow l = \frac{3}{{\sqrt {49} }}\]
\[ \Rightarrow l = \frac{3}{7}\]
Further, \[l = \cos \alpha \] , where \[\alpha \] is the angle the vector makes with the x-axis.
Thus, \[\cos \alpha = \frac{3}{7}\]
\[ \Rightarrow \alpha = {\cos ^{ - 1}}(\frac{3}{7})\]
The vector \[\overrightarrow v = 3\hat i - 6\hat j + 2\hat k\] makes an angle of \[{\cos ^{ - 1}}(\frac{3}{7})\] with the x-axis.
12. Write a unit vector perpendicular to both the vectors \[\mathbf{3\hat i - 2\hat j + \hat k}\] and \[ \mathbf{- 2\hat i + \hat j - 2\hat k}\] .
Ans: Given vectors \[\overrightarrow a = 3\hat i - 2\hat j + \hat k\] and \[\overrightarrow b = - 2\hat i + \hat j - 2\hat k\] .
Firstly, we find the cross product of the two vectors:
\[\overrightarrow a \times \overrightarrow b = \left( {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ 3&{ - 2}&1\\ { - 2}&1&{ - 2} \end{array}} \right)\]
\[ \Rightarrow \overrightarrow a \times \overrightarrow b = \hat i(3) - \hat j( - 4) + \hat k( - 1)\]
\[ \Rightarrow \overrightarrow a \times \overrightarrow b = 3\hat i + 4\hat j - \hat k\]
Now, the required unit vector which is perpendicular to both the given vectors can be calculated as \[\frac{{\overrightarrow a \times \overrightarrow b }}{{|\overrightarrow a \times \overrightarrow b |}}\]
\[ \Rightarrow \frac{{\overrightarrow a \times \overrightarrow b }}{{|\overrightarrow a \times \overrightarrow b |}} = \frac{{3\hat i + 4\hat j - \hat k}}{{\sqrt {{3^2} + {4^2} + {{( - 1)}^2}} }}\]
\[ \Rightarrow \frac{{\overrightarrow a \times \overrightarrow b }}{{|\overrightarrow a \times \overrightarrow b |}} = \frac{{3\hat i + 4\hat j - \hat k}}{{\sqrt {9 + 16 + 1} }}\]
\[ \Rightarrow \frac{{\overrightarrow a \times \overrightarrow b }}{{|\overrightarrow a \times \overrightarrow b |}} = \frac{{3\hat i + 4\hat j - \hat k}}{{\sqrt {26} }}\]
\[ \Rightarrow \frac{{\overrightarrow a \times \overrightarrow b }}{{|\overrightarrow a \times \overrightarrow b |}} = \frac{{3\hat i + 4\hat j - \hat k}}{{\sqrt {26} }}\]
Hence, the required vector is \[\frac{{3\hat i + 4\hat j - \hat k}}{{\sqrt {26} }}\] .
13. What is the projection of the vector \[\mathbf{\hat i - \hat j}\] on the vector \[\mathbf{\hat i + \hat j}\] ?
Ans: Let \[\overrightarrow a = \hat i - \hat j\] and \[\overrightarrow b = \hat i + \hat j\] .
Projection of vector \[\overrightarrow a \] on \[\overrightarrow b \] \[ = \frac{{\overrightarrow a \cdot \overrightarrow b }}{{|\overrightarrow b |}}\]
\[ \Rightarrow \frac{{\overrightarrow a \cdot \overrightarrow b }}{{|\overrightarrow b |}} = \frac{{(1)(1) + ( - 1)(1) + (0)(0)}}{{\sqrt {{1^2} + {1^2}} }}\]
\[ \Rightarrow \frac{{\overrightarrow a \cdot \overrightarrow b }}{{|\overrightarrow b |}} = \frac{{1 - 1}}{{\sqrt 2 }}\]
\[ \Rightarrow \frac{{\overrightarrow a \cdot \overrightarrow b }}{{|\overrightarrow b |}} = 0\]
The projection of vector \[\overrightarrow a \] on \[\overrightarrow b \] is \[0\] .
14. If \[\mathbf{|\overrightarrow a | = 2}\] , \[\mathbf{|\overrightarrow b | = 2\sqrt 3} \] and \[\mathbf{\overrightarrow a \bot \overrightarrow b }\] , what is the value of \[\mathbf{|\overrightarrow a + \overrightarrow b |}\] ?
Ans: Taking the square of \[|\overrightarrow a + \overrightarrow b |\] :
\[|\overrightarrow a + \overrightarrow b {|^2} = |\overrightarrow a + \overrightarrow b | \cdot |\overrightarrow a + \overrightarrow b |\]
\[ \Rightarrow |\overrightarrow a + \overrightarrow b {|^2} = \overrightarrow a \cdot \overrightarrow a + \overrightarrow a \cdot \overrightarrow b + \overrightarrow b \cdot \overrightarrow a + \overrightarrow b \cdot \overrightarrow b \]
Since \[\overrightarrow a \] and \[\overrightarrow b \] are perpendicular, their dot product is equal to zero.
Further, we know that the dot product of a vector with itself is equal to the square of its magnitude.
\[ \Rightarrow |\overrightarrow a + \overrightarrow b {|^2} = |\overrightarrow a {|^2} + |\overrightarrow b {|^2}\]
\[ \Rightarrow |\overrightarrow a + \overrightarrow b {|^2} = {2^2} + {(2\sqrt 3 )^2}\]
\[ \Rightarrow |\overrightarrow a + \overrightarrow b {|^2} = 4 + 12\]
\[ \Rightarrow |\overrightarrow a + \overrightarrow b {|^2} = 16\]
Hence, \[|\overrightarrow a + \overrightarrow b | = 4\] .
15. For what value of \[\mathbf{\lambda }\] is \[\mathbf{\overrightarrow a = \lambda \hat i + \hat j + 4\hat k}\] perpendicular to \[\mathbf{\overrightarrow b = 2\hat i + 6\hat j + 3\hat k}\] ?
Ans: For \[\overrightarrow a \] to be perpendicular to \[\overrightarrow b \] , their dot product should be zero.
So, \[\overrightarrow a \cdot \overrightarrow b = {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}\]
\[ \Rightarrow \overrightarrow a \cdot \overrightarrow b = \lambda (2) + (1)(6) + (4)(3)\]
\[ \Rightarrow \overrightarrow a \cdot \overrightarrow b = 2\lambda + 6 + 12\]
\[ \Rightarrow \overrightarrow a \cdot \overrightarrow b = 2\lambda + 18\]
Now, \[\overrightarrow a \cdot \overrightarrow b = 0\]
Hence, \[2\lambda + 18 = 0\]
\[ \Rightarrow \lambda = - \frac{{18}}{2}\]
\[ \Rightarrow \lambda = - 9\]
16. What is \[\mathbf{|\overrightarrow a |}\] , if \[\mathbf{(\overrightarrow a + \overrightarrow b ) \cdot (\overrightarrow a - \overrightarrow b ) = 3}\] and \[\mathbf{2|\overrightarrow b | = |\overrightarrow a |}\] ?
Ans: It is given that \[(\overrightarrow a + \overrightarrow b ) \cdot (\overrightarrow a - \overrightarrow b ) = 3\]
\[ \Rightarrow \overrightarrow a \cdot \overrightarrow a - \overrightarrow a \cdot \overrightarrow b + \overrightarrow b \cdot \overrightarrow a + \overrightarrow b \cdot \overrightarrow b = 3\]
We know that the dot product of a vector with itself is equal to the square of its magnitude.
\[ \Rightarrow |\overrightarrow a {|^2} + |\overrightarrow b {|^2} = 3\]
\[ \Rightarrow |\overrightarrow a {|^2} + {\left( {\frac{{|\overrightarrow a |}}{2}} \right)^2} = 3\] (Since \[2|\overrightarrow b | = |\overrightarrow a |\] )
\[ \Rightarrow |\overrightarrow a {|^2} + \frac{{|\overrightarrow a {|^2}}}{4} = 3\]
\[ \Rightarrow \frac{{5|\overrightarrow a {|^2}}}{4} = 3\]
\[ \Rightarrow |\overrightarrow a {|^2} = \frac{{12}}{5}\]
\[ \Rightarrow |\overrightarrow a | = \pm \sqrt {\frac{{12}}{5}} \]
17. What is the angle between \[\mathbf{\overrightarrow a }\] and \[\mathbf{\overrightarrow b }\] , if \[\mathbf{|\overrightarrow a - \overrightarrow b | = |\overrightarrow a + \overrightarrow b |}\] ?
Ans: We have \[|\overrightarrow a - \overrightarrow b | = |\overrightarrow a + \overrightarrow b |\]
Squaring both sides,
\[ \Rightarrow |\overrightarrow a - \overrightarrow b {|^2} = |\overrightarrow a + \overrightarrow b {|^2}\]
\[ \Rightarrow |\overrightarrow a {|^2} + |\overrightarrow b {|^2} - 2\overrightarrow a \cdot \overrightarrow b = |\overrightarrow a {|^2} + |\overrightarrow b {|^2} + 2\overrightarrow a \cdot \overrightarrow b \]
\[ \Rightarrow - 2\overrightarrow a \cdot \overrightarrow b = 2\overrightarrow a \cdot \overrightarrow b \]
\[ \Rightarrow 4\overrightarrow a \cdot \overrightarrow b = 0\]
\[ \Rightarrow \overrightarrow a \cdot \overrightarrow b = 0\]
Since the dot product of the two vectors is equal to zero, the given vectors are perpendicular. Hence, the angle between them is \[{90^ \circ }\] .
18. In a parallelogram ABCD, \[\mathbf{\overrightarrow {AB} = 2\hat i - \hat j + 4\hat k}\] and \[\mathbf{\overrightarrow {AC} = \hat i + \hat j + 4\hat k}\] . What is the length of the side BC?
Ans: We have \[\overrightarrow {AB} = 2\hat i - \hat j + 4\hat k\] and \[\overrightarrow {AC} = \hat i + \hat j + 4\hat k\] .
We calculate \[|\overrightarrow {AB} | = \sqrt {{2^2} + {{( - 1)}^2} + {4^2}} \]
\[ \Rightarrow |\overrightarrow {AB} | = \sqrt {21} \]
Similarly, \[|\overrightarrow {AC} | = \sqrt {{1^2} + {1^2} + {4^2}} \]
\[ \Rightarrow |\overrightarrow {AC} | = \sqrt {18} \]
In a parallelogram, AC would represent a diagonal and AB and BC would be adjacent sides.
So, \[|\overrightarrow {BC} | = |\overrightarrow {AC} - \overrightarrow {AB} |\]
Squaring both sides:
\[ \Rightarrow |\overrightarrow {BC} {|^2} = |\overrightarrow {AC} - \overrightarrow {AB} {|^2}\]
\[ \Rightarrow |\overrightarrow {BC} {|^2} = |\overrightarrow {AC} {|^2} + |\overrightarrow {AB} {|^2} - 2\overrightarrow {AC} \cdot \overrightarrow {AB} \]
\[ \Rightarrow |\overrightarrow {BC} {|^2} = 18 + 21 - 2[(2)(1) + ( - 1)(1) + (4)(4)]\]
\[ \Rightarrow |\overrightarrow {BC} {|^2} = 39 - 2(17)\]
\[ \Rightarrow |\overrightarrow {BC} {|^2} = 39 - 34\]
\[ \Rightarrow |\overrightarrow {BC} {|^2} = 5\]
\[ \Rightarrow |\overrightarrow {BC} | = \sqrt 5 \]
19. What is the area of a parallelogram whose diagonals are given by vectors \[\mathbf{2\hat i + \hat j - 2\hat k}\] and \[ \mathbf{- \hat i + 2\hat k}\] ?
Ans: The two diagonals of a parallelogram are given by \[\overrightarrow a = 2\hat i + \hat j - 2\hat k\] and \[\overrightarrow b = - \hat i + 2\hat k\] .
We find their cross product as follows:
\[\overrightarrow a \times \overrightarrow b = \left( {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ 2&1&{ - 2}\\ { - 1}&0&2 \end{array}} \right)\]
\[ \Rightarrow \overrightarrow a \times \overrightarrow b = \hat i(2) - \hat j(2) + \hat k(1)\]
\[ \Rightarrow \overrightarrow a \times \overrightarrow b = 2\hat i - 2\hat j + \hat k\]
Next, we find its magnitude:
\[ \Rightarrow |\overrightarrow a \times \overrightarrow b | = \sqrt {{2^2} + {{( - 2)}^2} + {1^2}} \]
\[ \Rightarrow |\overrightarrow a \times \overrightarrow b | = \sqrt {4 + 4 + 1} \]
\[ \Rightarrow |\overrightarrow a \times \overrightarrow b | = \sqrt 9 \]
\[ \Rightarrow |\overrightarrow a \times \overrightarrow b | = 3\]
The area of the parallelogram A can be calculated as:
\[A = \frac{1}{2} \cdot |\overrightarrow a \times \overrightarrow b |\]
\[ \Rightarrow A = \frac{3}{2}\] square units
The area of the parallelogram with diagonals \[\overrightarrow a = 2\hat i + \hat j - 2\hat k\] and \[\overrightarrow b = - \hat i + 2\hat k\] is \[\frac{3}{2}\] square units.
20. Find \[\mathbf{|\overrightarrow x |}\] if for a unit vector \[\mathbf{\hat a}\] , \[\mathbf{(\overrightarrow x - \hat a) \cdot (\overrightarrow x + \hat a) = 12}\] .
Ans: It is given that \[(\overrightarrow x - \hat a) \cdot (\overrightarrow x + \hat a) = 12\]
\[ \Rightarrow \overrightarrow x \cdot \overrightarrow x - \overrightarrow x \cdot \hat a + \hat a \cdot \overrightarrow x - \hat a \cdot \hat a = 12\]
We know that the dot product of a vector with itself is equal to the square of its magnitude.
\[ \Rightarrow |\overrightarrow x {|^2} - |\hat a{|^2} = 12\]
\[ \Rightarrow |\overrightarrow x {|^2} - {1^2} = 12\] (Since, magnitude of a unit vector is equal to one unit)
\[ \Rightarrow |\overrightarrow x {|^2} = 13\]
\[ \Rightarrow |\overrightarrow x | = \sqrt {13} \] units
21. If \[\overrightarrow a \] and \[\overrightarrow b \] are two unit vectors and \[\overrightarrow a + \overrightarrow b \] is also a unit vector, then what is the angle between \[\overrightarrow a \] and \[\overrightarrow b \] ?
Ans: We know that \[\overrightarrow a + \overrightarrow b \] , \[\overrightarrow a \] and \[\overrightarrow b \] are unit vectors.
Taking the square of \[\overrightarrow a + \overrightarrow b \] :
\[|\overrightarrow a + \overrightarrow b {|^2} = \overrightarrow a \cdot \overrightarrow a + 2\overrightarrow a \cdot \overrightarrow b + \overrightarrow b \cdot \overrightarrow b \]
\[ \Rightarrow |\overrightarrow a + \overrightarrow b {|^2} = |\overrightarrow a {|^2} + 2\overrightarrow a \cdot \overrightarrow b + |\overrightarrow b {|^2}\]
\[ \Rightarrow {1^2} = {1^2} + 2\overrightarrow a \cdot \overrightarrow b + {1^2}\] (Since magnitude of unit vectors is equal to one unit)
\[ \Rightarrow 2\overrightarrow a \cdot \overrightarrow b = - 1\]
\[ \Rightarrow \overrightarrow a \cdot \overrightarrow b = - \frac{1}{2}\]
Further, \[\overrightarrow a \cdot \overrightarrow b = |\overrightarrow a ||\overrightarrow b |\cos \theta \]
\[ \Rightarrow |\overrightarrow a ||\overrightarrow b |\cos \theta = - \frac{1}{2}\]
\[ \Rightarrow (1)(1)\cos \theta = - \frac{1}{2}\]
\[ \Rightarrow \cos \theta = - \frac{1}{2}\]
\[ \Rightarrow \theta = \frac{{2\pi }}{3}\]
22. If \[\mathbf{\hat i,\hat j,\hat k}\] are the usual three mutually perpendicular unit vectors then what is the value of \[\mathbf{\hat i \cdot (\hat j \times \hat k) + \hat j \cdot (\hat i \times \hat k) + \hat k \cdot (\hat j \times \hat i)}\] ?
Ans: We have \[\hat i \cdot (\hat j \times \hat k) + \hat j \cdot (\hat i \times \hat k) + \hat k \cdot (\hat j \times \hat i)\] .
It is known that \[\hat j \times \hat k = \hat i\] , \[\hat k \times \hat i = \hat j\] and \[\hat i \times \hat j = \hat k\] .
Therefore, \[\hat i \cdot (\hat j \times \hat k) + \hat j \cdot (\hat i \times \hat k) + \hat k \cdot (\hat j \times \hat i)\] can be rewritten as:
\[ = \hat i \cdot \hat i + \hat j \cdot ( - \hat j) + \hat k \cdot ( - \hat k)\]
\[= \hat i \cdot \hat i - \hat j \cdot \hat j - \hat k \cdot \hat k\]
\[ = 1 - 1 - 1\] (Since \[\hat i \cdot \hat i = \hat j \cdot \hat j = \hat k \cdot \hat k = 1\] )
\[ = - 1\]
23. What is the angle between \[\mathbf{\overrightarrow x} \] and \[\mathbf{\overrightarrow y }\] if \[\mathbf{\overrightarrow x \cdot \overrightarrow y = |\overrightarrow x \times \overrightarrow y |}\] ?
Ans: The dot product and cross product of the given vectors \[\overrightarrow x \] and \[\overrightarrow y \] are equal. This implies:
\[\overrightarrow x \cdot \overrightarrow y = |\overrightarrow x \times \overrightarrow y |\]
\[ \Rightarrow |\overrightarrow x ||\overrightarrow y |\cos \theta = |\overrightarrow x ||\overrightarrow y |\sin \theta \]
\[ \Rightarrow \cos \theta = \sin \theta \]
This is only possible if \[\theta = \frac{\pi }{4}\] .
Hence, the angle between vectors \[\overrightarrow x \] and \[\overrightarrow y \] is \[\frac{\pi }{4}\] .
24. Write a unit vector in XY-plane, making an angle of \[{30^ \circ }\] with the positive direction of x–axis.
Ans: Let \[\overrightarrow r \] be a unit vector in the XY-plane, making an angle of \[{30^ \circ }\] with the positive direction of the x-axis. It will be represented as:
\[\overrightarrow r = \cos \theta \hat i + \sin \theta \hat j\]
Substituting \[\theta = {30^ \circ }\] :
\[ \Rightarrow \overrightarrow r = \cos ({30^ \circ })\hat i + \sin ({30^ \circ })\hat j\]
\[ \Rightarrow \overrightarrow r = \frac{{\sqrt 3 }}{2}\hat i + \frac{1}{2}\hat j\]
The required vector is \[\frac{{\sqrt 3 }}{2}\hat i + \frac{1}{2}\hat j\] .
25. If \[\mathbf{\overrightarrow a }\] , \[\mathbf{\overrightarrow b }\] and \[\mathbf{\overrightarrow c }\] are unit vectors with \[\mathbf{\overrightarrow a + \overrightarrow b + \overrightarrow c = 0}\] , then what is the value of \[\mathbf{\overrightarrow a \cdot \overrightarrow b + \overrightarrow b \cdot \overrightarrow c + \overrightarrow c \cdot \overrightarrow a }\] ?
Ans: Since \[\overrightarrow a \] , \[\overrightarrow b \] and \[\overrightarrow c \] are unit vectors, it means that \[|\overrightarrow a | = |\overrightarrow b | = |\overrightarrow c | = 1\] .
Further it is given that \[\overrightarrow a + \overrightarrow b + \overrightarrow c = 0\] .
Squaring both sides:
\[ \Rightarrow {(\overrightarrow a + \overrightarrow b + \overrightarrow c )^2} = 0\]
\[ \Rightarrow |\overrightarrow a {|^2} + |\overrightarrow b {|^2} + |\overrightarrow c {|^2} + 2(\overrightarrow a \cdot \overrightarrow b + \overrightarrow b \cdot \overrightarrow c + \overrightarrow c \cdot \overrightarrow a ) = 0\]
\[ \Rightarrow 1 + 1 + 1 + 2(\overrightarrow a \cdot \overrightarrow b + \overrightarrow b \cdot \overrightarrow c + \overrightarrow c \cdot \overrightarrow a ) = 0\]
\[ \Rightarrow 2(\overrightarrow a \cdot \overrightarrow b + \overrightarrow b \cdot \overrightarrow c + \overrightarrow c \cdot \overrightarrow a ) = - 3\]
\[ \Rightarrow \overrightarrow a \cdot \overrightarrow b + \overrightarrow b \cdot \overrightarrow c + \overrightarrow c \cdot \overrightarrow a = - \frac{3}{2}\]
26. If \[\mathbf{\overrightarrow a }\] and \[\mathbf{\overrightarrow b }\] are unit vectors such that \[\mathbf{\overrightarrow a + 2\overrightarrow b} \] is perpendicular to \[\mathbf{5\overrightarrow a - 4\overrightarrow b }\] , then what is the angle between \[\mathbf{\overrightarrow a }\] and \[\mathbf{\overrightarrow b }\] ?
Ans: It is given that \[\overrightarrow a \] and \[\overrightarrow b \] are unit vectors, and the vectors \[\overrightarrow a + 2\overrightarrow b \] and \[5\overrightarrow a - 4\overrightarrow b \] are perpendicular, that is, their dot product will be zero.
\[(\overrightarrow a + 2\overrightarrow b ) \cdot (5\overrightarrow a - 4\overrightarrow b ) = 0\]
\[ \Rightarrow 5|\overrightarrow a {|^2} + 6\overrightarrow a \cdot \overrightarrow b - 8|\overrightarrow b {|^2} = 0\]
\[ \Rightarrow 5{(1)^2} + 6\overrightarrow a \cdot \overrightarrow b - 8{(1)^2} = 0\] (Since \[\overrightarrow a \] and \[\overrightarrow b \] are unit vectors)
\[ \Rightarrow 6\overrightarrow a \cdot \overrightarrow b = 3\]
\[ \Rightarrow \overrightarrow a \cdot \overrightarrow b = \frac{1}{2}\]
Now, \[\overrightarrow a \cdot \overrightarrow b = |\overrightarrow a ||\overrightarrow b |\cos \theta \]
\[ \Rightarrow \frac{1}{2} = (1)(1)\cos \theta \]
\[ \Rightarrow \frac{1}{2} = \cos \theta \]
\[ \Rightarrow \theta = \frac{\pi }{3}\]
Short Answer Questions (4 Mark)
27. If ABCDEF is a regular hexagon then using triangle law of addition prove that \[\mathbf{\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} + \overrightarrow {AE} + \overrightarrow {AF} = 3\overrightarrow {AD} = 6\overrightarrow {AO}} \] , O being the centre of hexagon.
Ans: ABCDEF is a regular polygon:

Hence, \[\overrightarrow {AB} ,\overrightarrow {BC} ,\overrightarrow {CD} ,\overrightarrow {ED} ,\overrightarrow {EF} ,\overrightarrow {AF} \] are all equal.
Further, using the triangle law of addition:
\[\overrightarrow {AC} + \overrightarrow {CD} = \overrightarrow {AD} \] ......(1)
And, \[\overrightarrow {AE} + \overrightarrow {ED} = \overrightarrow {AD} \] ......(2)
Now, taking (1)+(2) :
\[\overrightarrow {AC} + \overrightarrow {CD} + \overrightarrow {AE} + \overrightarrow {ED} = \overrightarrow {AD} + \overrightarrow {AD} \]
Adding \[\overrightarrow {AD} \] both sides:
\[ \Rightarrow \overrightarrow {AC} + \overrightarrow {CD} + \overrightarrow {AE} + \overrightarrow {ED} + \overrightarrow {AD} = 3\overrightarrow {AD} \]
\[ \Rightarrow \overrightarrow {AC} + \overrightarrow {AF} + \overrightarrow {AE} + \overrightarrow {AB} + \overrightarrow {AD} = 3\overrightarrow {AD} \] (Since \[\overrightarrow {CD} = \overrightarrow {AF} \] and \[\overrightarrow {AE} = \overrightarrow {AB} \] )
Also, O is the midpoint of \[\overrightarrow {AD} \] , therefore, \[\overrightarrow {AD} = 2\overrightarrow {AO} \] .
Hence, \[\overrightarrow {AC} + \overrightarrow {AF} + \overrightarrow {AE} + \overrightarrow {AB} + \overrightarrow {AD} = 3\overrightarrow {AD} = 6\overrightarrow {AO} \] is proved.
28. Points L, M, N divide the sides BC, CA, AB of a ABC in the ratios 1:4,3:2,3:7 respectively. Prove that \[\mathbf{\overrightarrow {AL} + \overrightarrow {BM} + \overrightarrow {CN} }\] is a vector parallel to \[\mathbf{\overrightarrow {CK} }\] where K divides AB in ratio 1:3 .
Ans: Let \[\overrightarrow a \] , \[\overrightarrow b \] and \[\overrightarrow c \] be the position vectors of points A, B and C respectively.
We find the position vectors of points L, M, N and K:
\[\overrightarrow {OL} = \frac{{(1)\overrightarrow c + (4)\vec b}}{{1 + 4}}\] (Since L divides BC in the ratio \[1:4\] )
\[ \Rightarrow \overrightarrow {OL} = \frac{{\vec c + 4\vec b}}{5}\]
\[\overrightarrow {OM} = \frac{{(3)\overrightarrow a + (2)c}}{{3 + 2}}\] (Since M divides CA in the ratio \[3:2\] )
\[ \Rightarrow \overrightarrow {OM} = \frac{{3\overrightarrow a + 2\overrightarrow c }}{5}\]
\[\overrightarrow {ON} = \frac{{(3)\overrightarrow b + (7)\overrightarrow a }}{{3 + 7}}\] (Since N divides AB in the ratio \[3:7\] )
\[ \Rightarrow \overrightarrow {ON} = \frac{{3\vec b + 7\vec a}}{{10}}\]
\[\overrightarrow {OK} = \frac{{(1)\overrightarrow b + (3)\overrightarrow a }}{{1 + 3}}\] (Since K divides AB in the ratio \[1:3\] )
\[ \Rightarrow \overrightarrow {OK} = \frac{{\vec b + 3\vec a}}{4}\]
Taking \[\overrightarrow {AL} + \overrightarrow {BM} + \overrightarrow {CN} \] :
\[ = (\overrightarrow {OL} - \overrightarrow {OA} ) + (\overrightarrow {BM} - \overrightarrow {OB} ) + (\overrightarrow {CN} - \overrightarrow {OC} )\]
\[ = (\overrightarrow {OL} - \overrightarrow a ) + (\overrightarrow {OM} - \overrightarrow b ) + (\overrightarrow {ON} - \overrightarrow c )\]
\[ = (\frac{{\overrightarrow c + 4\vec b}}{5} - \overrightarrow a ) + (\frac{{3\overrightarrow a + 2\overrightarrow c }}{5} - \overrightarrow b ) + (\frac{{3\vec b + 7\overrightarrow a }}{{10}} - \overrightarrow c )\]
\[ = \frac{{2\overrightarrow c + 8\vec b - 10\overrightarrow a + 6\overrightarrow a + 4\overrightarrow c - 10\overrightarrow b + 3\vec b + 7\overrightarrow a - 10\overrightarrow c }}{{10}}\]
\[ = \frac{{3\overrightarrow a + \overrightarrow b - 4\overrightarrow c }}{{10}}\]
Now, \[\overrightarrow {CK} = \overrightarrow {OK} - \overrightarrow {OC} \]
\[ \Rightarrow \overrightarrow {CK} = \frac{{\vec b + 3\vec a}}{4} - \overrightarrow c \]
\[ \Rightarrow \overrightarrow {CK} = \frac{{\vec b + 3\vec a - 4\overrightarrow c }}{4}\]
We notice that \[\overrightarrow {CK} = \frac{5}{2} \times (\overrightarrow {AL} + \overrightarrow {BM} + \overrightarrow {CN} )\] .
Hence, we prove that \[\overrightarrow {AL} + \overrightarrow {BM} + \overrightarrow {CN} \] is parallel to \[\overrightarrow {CK} \] .
29. The scalar product of vector \[\mathbf{\hat i + \hat j + \hat k}\] with a unit vector along the sum of the vectors \[\mathbf{2\hat i + 4\hat j - 5\hat k}\] and \[\mathbf{\lambda \hat i + 2\hat j + 3\hat k}\] is equal to 1 . Find the value of \[\lambda \] .
Ans: The sum of vectors \[2\hat i + 4\hat j - 5\hat k\] and \[\lambda \hat i + 2\hat j + 3\hat k\] is:
\[(2\hat i + 4\hat j - 5\hat k) + (\lambda \hat i + 2\hat j + 3\hat k)\]
\[ = \hat i(2 + \lambda ) + \hat j(4 + 2) + \hat k( - 5 + 3)\]
\[ = (2 + \lambda )\hat i + 6\hat j - 2\hat k\]
The unit vector along the sum of \[2\hat i + 4\hat j - 5\hat k\] and \[\lambda \hat i + 2\hat j + 3\hat k\] vectors is:
\[\frac{{(2 + \lambda )\hat i + 6\hat j - 2\hat k}}{{|(2 + \lambda )\hat i + 6\hat j - 2\hat k|}}\]
\[ = \frac{{(2 + \lambda )\hat i + 6\hat j - 2\hat k}}{{\sqrt {{\lambda ^2} + 4\lambda + 4 + 36 + 4} }}\]
\[ = \frac{{(2 + \lambda )\hat i + 6\hat j - 2\hat k}}{{\sqrt {{\lambda ^2} + 4\lambda + 44} }}\]
The scalar product of \[\frac{{(2 + \lambda )\hat i + 6\hat j - 2\hat k}}{{\sqrt {{\lambda ^2} + 4\lambda + 44} }}\] and \[\hat i + \hat j + \hat k\] is \[1\] .
Thus, \[(\frac{{(2 + \lambda )\hat i + 6\hat j - 2\hat k}}{{\sqrt {{\lambda ^2} + 4\lambda + 44} }}) \cdot (\hat i + \hat j + \hat k) = 1\]
\[ \Rightarrow \frac{{(2 + \lambda ) + 6 - 2}}{{\sqrt {{\lambda ^2} + 4\lambda + 44} }} = 1 \]
\[ \Rightarrow \lambda + 6 = \sqrt {{\lambda ^2} + 4\lambda + 44} \]
Squaring both sides:
\[ \Rightarrow {(\lambda + 6)^2} = {\lambda ^2} + 4\lambda + 44\]
\[ \Rightarrow {\lambda ^2} + 12\lambda + 36 = {\lambda ^2} + 4\lambda + 44\]
\[ \Rightarrow {\lambda ^2} + 12\lambda + 36 = {\lambda ^2} + 4\lambda + 44\]
\[ \Rightarrow 8\lambda = 8\]
\[ \Rightarrow \lambda = 1\]
30. \[\mathbf{\overrightarrow a} \] , \[\mathbf{\overrightarrow b }\] and \[\mathbf{\overrightarrow c }\] are three mutually perpendicular vectors of equal magnitude. Show that \[\mathbf{\overrightarrow a + \overrightarrow b + \overrightarrow c }\] makes equal angles with \[\mathbf{\overrightarrow a} \] , \[\mathbf{\overrightarrow b }\] and \[\mathbf{\overrightarrow c }\] with each angle as \[\mathbf{{\cos ^{ - 1}}\left( {\frac{1}{{\sqrt 3 }}} \right)}\] .
Ans: Let \[|\overrightarrow a | = |\overrightarrow b | = |\overrightarrow c | = \lambda \] and since they are mutually perpendicular, \[\overrightarrow a \cdot \overrightarrow b = \overrightarrow b \cdot \overrightarrow c = \overrightarrow a \cdot \overrightarrow c = 0\] .
Consider \[|\overrightarrow a + \overrightarrow b + \overrightarrow c {|^2}\] :
\[ \Rightarrow |\overrightarrow a + \overrightarrow b + \overrightarrow c {|^2} = |\overrightarrow a {|^2} + |\overrightarrow b {|^2} + |\overrightarrow c {|^2} + 2(\overrightarrow a \cdot \overrightarrow b + \overrightarrow b \cdot \overrightarrow c + \overrightarrow a \cdot \overrightarrow c )\]
\[ \Rightarrow |\overrightarrow a + \overrightarrow b + \overrightarrow c {|^2} = {\lambda ^2} + {\lambda ^2} + {\lambda ^2} + 2(0 + 0 + 0)\]
\[ \Rightarrow |\overrightarrow a + \overrightarrow b + \overrightarrow c {|^2} = 3{\lambda ^2}\]
\[ \Rightarrow |\overrightarrow a + \overrightarrow b + \overrightarrow c | = \sqrt 3 \lambda \]
Suppose \[\overrightarrow a ,\overrightarrow b ,\overrightarrow c \] make angles \[{\theta _1},{\theta _2},{\theta _3}\] with \[\overrightarrow a + \overrightarrow b + \overrightarrow c \] respectively.
Then, \[\cos {\theta _1} = \frac{{\overrightarrow a \cdot (\overrightarrow a + \overrightarrow b + \overrightarrow c )}}{{|\overrightarrow a ||\overrightarrow a + \overrightarrow b + \overrightarrow c |}}\]
\[ \Rightarrow \cos {\theta _1} = \frac{{\overrightarrow a \cdot \overrightarrow a + \overrightarrow a \cdot \overrightarrow b + \overrightarrow a \cdot \overrightarrow c }}{{|\overrightarrow a | \cdot \sqrt 3 \lambda }}\]
\[ \Rightarrow \cos {\theta _1} = \frac{{|\overrightarrow a {|^2}}}{{|\overrightarrow a | \cdot \sqrt 3 \lambda }}\]
\[ \Rightarrow \cos {\theta _1} = \frac{\lambda }{{\sqrt 3 \lambda }}\]
\[ \Rightarrow \cos {\theta _1} = \frac{1}{{\sqrt 3 }}\]
Similarly, \[\cos {\theta _2} = \cos {\theta _3} = \frac{1}{{\sqrt 3 }}\] .
Therefore, \[{\theta _1} = {\theta _2} = {\theta _3}\] .
31. If \[\mathbf{\overrightarrow \alpha = 3\hat i - \hat j}\] and \[\mathbf{\overrightarrow \beta = 2\hat i + \hat j + 3\hat k}\] then express \[\mathbf{\overrightarrow \beta } \] in the form of \[\mathbf{\overrightarrow \beta = \overrightarrow {{\beta _1}} + \overrightarrow {{\beta _2}} }\] , where \[\mathbf{\overrightarrow {{\beta _1}} }\] is parallel to \[\mathbf{\overrightarrow \alpha }\] and \[\mathbf{\overrightarrow {{\beta _2}} }\] is perpendicular to \[\mathbf{\overrightarrow \alpha } \] .
Ans: It is given that \[\overrightarrow \alpha = 3\hat i - \hat j\] and \[\overrightarrow \beta = 2\hat i + \hat j + 3\hat k\] .
Since \[\vec \alpha \] is parallel to \[\overrightarrow {{\beta _1}} \] , that implies \[\overrightarrow {{\beta _1}} = \lambda \overrightarrow \alpha \] .
\[ \Rightarrow \overrightarrow {{\beta _1}} = \lambda (3\hat i - \hat j)\]
Further, \[\overrightarrow \beta = \overrightarrow {{\beta _1}} + \overrightarrow {{\beta _2}} \]
\[ \Rightarrow 2\hat i + \hat j + 3\hat k = [\lambda (3\hat i - \hat j)] + \overrightarrow {{\beta _2}} \]
\[ \Rightarrow \overrightarrow {{\beta _2}} = (2 - 3\lambda )\hat i + (1 + \lambda )\hat j + 3\hat k\]
Now, \[\overrightarrow {{\beta _2}} \] is perpendicular to \[\vec \alpha \] , hence their dot product will be equal to zero.
\[ \Rightarrow \overrightarrow \alpha \cdot \overrightarrow {{\beta _2}} = 0\]
\[ \Rightarrow (3\hat i - \hat j) \cdot [(2 - 3\lambda )\hat i + (1 + \lambda )\hat j + 3\hat k] = 0\]
\[ \Rightarrow 3(2 - 3\lambda ) + ( - 1 - \lambda ) = 0\]
\[ \Rightarrow 6 - 9\lambda - 1 - \lambda = 0\]
\[ \Rightarrow 5 - 10\lambda = 0\]
\[ \Rightarrow \lambda = \frac{1}{2}\]
We calculate the value of \[\overrightarrow {{\beta _1}} \] and \[\overrightarrow {{\beta _2}} \] :
\[\overrightarrow {{\beta _1}} = \lambda (3\hat i - \hat j)\]
\[ \Rightarrow \overrightarrow {{\beta _1}} = \frac{1}{2}(3\hat i - \hat j)\]
\[ \Rightarrow \overrightarrow {{\beta _1}} = \frac{3}{2}\hat i - \frac{1}{2}\hat j\]
Also, \[\overrightarrow {{\beta _2}} = (2 - 3\lambda )\hat i + (1 + \lambda )\hat j + 3\hat k\]
\[ \Rightarrow \overrightarrow {{\beta _2}} = [2 - 3(\frac{1}{2})]\hat i + (1 + \frac{1}{2})\hat j + 3\hat k\]
\[ \Rightarrow \overrightarrow {{\beta _2}} = \frac{1}{2}\hat i + \frac{3}{2}\hat j + 3\hat k\]
Hence, we can say \[\overrightarrow \beta = \left( {\frac{3}{2}\hat i - \frac{1}{2}\hat j} \right) + \left( {\frac{1}{2}\hat i + \frac{3}{2}\hat j + 3\hat k} \right)\] .
32. If \[\mathbf{\overrightarrow a }\] , \[\mathbf{\overrightarrow b }\] , \[\mathbf{\overrightarrow c }\] are three vectors such that \[\mathbf{\overrightarrow a + \overrightarrow b + \overrightarrow c = 0}\] then prove that \[\mathbf{\overrightarrow a \times \overrightarrow b = \overrightarrow b \times \overrightarrow c = \overrightarrow c \times \overrightarrow a} \] .
Ans: We know that \[\overrightarrow a + \overrightarrow b + \overrightarrow c = 0\] .
Cross multiplying both sides by \[\overrightarrow a \] :
\[\overrightarrow a \times (\overrightarrow a + \overrightarrow b + \overrightarrow c ) = \overrightarrow a \times \overrightarrow 0 \]
\[ \Rightarrow \overrightarrow a \times \overrightarrow a + \overrightarrow a \times \overrightarrow b + \overrightarrow a \times \overrightarrow c = 0\]
\[ \Rightarrow 0 + \overrightarrow a \times \overrightarrow b - \overrightarrow c \times \overrightarrow a = 0\] (Since \[\overrightarrow a \times \overrightarrow a = 0\] and \[\overrightarrow a \times \overrightarrow c = - \overrightarrow c \times \overrightarrow a \] )
\[ \Rightarrow \overrightarrow a \times \overrightarrow b = \overrightarrow c \times \overrightarrow a \] ......(1)
Similarly, if we cross multiplying both sides of \[\overrightarrow a + \overrightarrow b + \overrightarrow c = \overrightarrow 0 \] by \[\overrightarrow b \] :
\[\overrightarrow b \times (\overrightarrow a + \overrightarrow b + \overrightarrow c ) = \overrightarrow b \times \overrightarrow 0 \]
\[ \Rightarrow \overrightarrow b \times \overrightarrow a + \overrightarrow b \times \overrightarrow b + \overrightarrow b \times \overrightarrow c = 0\]
\[ \Rightarrow - \overrightarrow a \times \overrightarrow b + \overrightarrow b \times \overrightarrow c = 0\] (Since \[\overrightarrow b \times \overrightarrow b = 0\] and \[\overrightarrow b \times \overrightarrow a = - \overrightarrow a \times \overrightarrow b \] )
\[ \Rightarrow \overrightarrow a \times \overrightarrow b = \overrightarrow b \times \overrightarrow c \] ......(2)
From (1) and (2) , we conclude that \[\overrightarrow a \times \overrightarrow b = \overrightarrow b \times \overrightarrow c = \overrightarrow c \times \overrightarrow a \] .
33. If \[\mathbf{|\overrightarrow a | = 3}\] , \[\mathbf{|\overrightarrow b | = 5}\] , \[\mathbf{|\overrightarrow c | = 7}\] and \[\mathbf{\overrightarrow a + \overrightarrow b + \overrightarrow c = 0}\] , find the angle between \[\mathbf{\overrightarrow a} \] and \[\mathbf{\overrightarrow b} \] .
Ans: We know that \[\overrightarrow a + \overrightarrow b + \overrightarrow c = 0\] .
\[ \Rightarrow \overrightarrow a + \overrightarrow b = - \overrightarrow c \]
Squaring both sides:
\[ \Rightarrow {(\overrightarrow a + \overrightarrow b )^2} = {( - \overrightarrow c )^2}\]
\[ \Rightarrow |\overrightarrow a {|^2} + |\overrightarrow b {|^2} + 2\overrightarrow a \cdot \overrightarrow b = | - \overrightarrow c {|^2}\]
\[ \Rightarrow {3^2} + {5^2} + 2\overrightarrow a \cdot \overrightarrow b = {( - 7)^2}\] (Since \[|\overrightarrow a | = 3\] , \[|\overrightarrow b | = 5\] , \[|\overrightarrow c | = 7\] )
\[ \Rightarrow 9 + 25 + 2\overrightarrow a \cdot \overrightarrow b = 49\]
\[ \Rightarrow 2\overrightarrow a \cdot \overrightarrow b = 15\]
\[ \Rightarrow 2(|\overrightarrow a ||\overrightarrow b |\cos \theta ) = 15\]
\[ \Rightarrow 2(3 \cdot 5 \cdot \cos \theta ) = 15\]
\[ \Rightarrow \cos \theta = \frac{1}{2}\]
The angle between \[\overrightarrow a \] and \[\overrightarrow b \] is \[\frac{\pi }{3}\] .
34. Let \[\mathbf{\overrightarrow a = \hat i - \hat j}\] , \[\mathbf{\overrightarrow b = 3\hat j - \hat k}\] and \[\mathbf{\overrightarrow c = 7\hat i - \hat k}\] , find a vector \[\mathbf{\overrightarrow d }\] which is perpendicular to \[\mathbf{\overrightarrow a} \] and \[\mathbf{\overrightarrow b }\] and \[\mathbf{\overrightarrow c \cdot \overrightarrow d = 1}\] .
Ans: It is given that \[\overrightarrow d \] is perpendicular to both \[\overrightarrow a \] and \[\overrightarrow b \] .
That implies \[\overrightarrow d = \lambda (\overrightarrow a \times \overrightarrow b )\] .
\[\overrightarrow d = \lambda \left( {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ 1&{ - 1}&0\\ 0&3&{ - 1} \end{array}} \right)\]
\[ \Rightarrow \overrightarrow d = \lambda [\hat i(1) - \hat j( - 1) + \hat k(3)]\]
\[ \Rightarrow \overrightarrow d = \lambda (\hat i + \hat j + 3\hat k)\]
Also, \[\overrightarrow c \cdot \overrightarrow d = 1\] .
\[ \Rightarrow (7\hat i - \hat k) \cdot [\lambda (\hat i + \hat j + 3\hat k)] = 1\]
\[ \Rightarrow 7\lambda + 0 - 3\lambda = 1\]
\[ \Rightarrow 4\lambda = 1\]
\[ \Rightarrow \lambda = \frac{1}{4}\]
Hence, \[\overrightarrow d = \frac{1}{4}(\hat i + \hat j + 3\hat k)\]
35. If \[\mathbf{\overrightarrow a = \hat i + \hat j + \hat k}\] , \[\mathbf{\overrightarrow c = \hat j - \hat k}\] are the given vectors then find a vector \[\mathbf{\overrightarrow b }\] satisfying the equation \[\mathbf{\overrightarrow a \times \overrightarrow b = \overrightarrow c }\] , \[\mathbf{\overrightarrow a \cdot \overrightarrow b = 3}\] .
Ans: Assume \[\overrightarrow b = x\hat i + y\hat j + z\hat k\] .
Since \[\overrightarrow a \cdot \overrightarrow b = 3\] :
\[(\hat i + \hat j + \hat k) \cdot (x\hat i + y\hat j + z\hat k) = 3\]
\[ \Rightarrow x + y + z = 3\] ......(1)
Now, we have \[\overrightarrow a \times \overrightarrow b = \overrightarrow c \] :
\[ \Rightarrow (\hat i + \hat j + \hat k) \times (x\hat i + y\hat j + z\hat k) = \hat j - \hat k\]
\[ \Rightarrow \left( {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ 1&1&1\\ x&y&z \end{array}} \right) = \hat j - \hat k\]
\[ \Rightarrow \hat i(z - y) - \hat j(z - x) + \hat k(y - x) = \hat j - \hat k\]
On comparing, we find that \[z - y = 0\] , that is, \[y = z\] .
Further, \[ - z + x = 1\] , that is, \[x = 1 + z\] .
From (1) , we have:
\[x + y + z = 3\]
\[ \Rightarrow 1 + z + z + z = 3\] (Since \[y = z\] and \[x = 1 + z\] )
\[ \Rightarrow 3z = 2\]
\[ \Rightarrow z = \frac{2}{3}\]
\[ \Rightarrow y = \frac{2}{3}\]
\[ \Rightarrow x = \frac{5}{3}\]
Hence, \[\overrightarrow b = \frac{{5\hat i + 2\hat j + 2\hat k}}{3}\] .
36. Find a unit vector perpendicular to plane ABC, when position vectors of A, B, C are \[\mathbf{3\hat i - \hat j + 2\hat k}\] , \[\mathbf{\hat i - \hat j - 3\hat k}\] and \[\mathbf{4\hat i - 3\hat j + \hat k}\] respectively.
Ans: We know that given any two vectors, their cross product will result in a vector that is perpendicular to the plane that the two vectors lie in.
Accordingly, we need to find a unit vector in the direction of \[\overrightarrow {AB} \times \overrightarrow {AC} \] .
First, we find \[\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} \] :
\[\overrightarrow {AB} = (\hat i - \hat j - 3\hat k) - (3\hat i - \hat j + 2\hat k)\]
\[ \Rightarrow \overrightarrow {AB} = - 2\hat i - 5\hat k\]
Next, \[\overrightarrow {AC} = \overrightarrow {OC} - \overrightarrow {OA} \] :
\[\overrightarrow {AC} = (4\hat i - 3\hat j + \hat k) - (3\hat i - \hat j + 2\hat k)\]
\[ \Rightarrow \overrightarrow {AC} = \hat i - 2\hat j - \hat k\]
Further, \[\overrightarrow {AB} \times \overrightarrow {AC} = \left( {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ { - 2}&0&{ - 5}\\ 1&{ - 2}&{ - 1} \end{array}} \right)\]
\[\overrightarrow {AB} \times \overrightarrow {AC} = - 10\hat i - 7\hat j - 4\hat k\]
\[|\overrightarrow {AB} \times \overrightarrow {AC} | = \sqrt {{{( - 10)}^2} + {{( - 7)}^2} + {{( - 4)}^2}} \]
\[|\overrightarrow {AB} \times \overrightarrow {AC} | = \sqrt {100 + 49 + 16} \]
\[|\overrightarrow {AB} \times \overrightarrow {AC} | = \sqrt {165} \]
Hence, required unit vector is \[\frac{{\overrightarrow {AB} \times \overrightarrow {AC} }}{{|\overrightarrow {AB} \times \overrightarrow {AC} |}} = \frac{{ - 10\hat i - 7\hat j - 4\hat k}}{{\sqrt {165} }}\] .
37. For any two vectors, show that \[\mathbf{|\overrightarrow a + \overrightarrow b | \le |\overrightarrow a | + |\overrightarrow b |}\] .
Ans: We take the square of \[\overrightarrow a + \overrightarrow b \] :
\[{\left( {\overrightarrow a + \overrightarrow b } \right)^2} = \overrightarrow a \cdot \overrightarrow a + \overrightarrow b \cdot \overrightarrow a + \overrightarrow a \cdot \overrightarrow b + \overrightarrow b \cdot \overrightarrow b \]
\[ \Rightarrow {\left( {\overrightarrow a + \overrightarrow b } \right)^2} = |\overrightarrow a {|^2} + 2\overrightarrow a \cdot \overrightarrow b + |\overrightarrow b {|^2}\]
\[ \Rightarrow {\left( {\overrightarrow a + \overrightarrow b } \right)^2} = |\overrightarrow a {|^2} + 2\overrightarrow a \cdot \overrightarrow b \cos \theta + |\overrightarrow b {|^2}\] ......(1)
We know that \[\cos \theta \le 1\] .
Multiplying \[2\overrightarrow a \cdot \overrightarrow b \] both sides:
\[2\overrightarrow a \cdot \overrightarrow b \cos \theta \le 2\overrightarrow a \cdot \overrightarrow b \]
Adding \[|\overrightarrow a {|^2} + |\overrightarrow b {|^2}\] both sides:
\[|\overrightarrow a {|^2} + |\overrightarrow b {|^2} + 2\overrightarrow a \cdot \overrightarrow b \cos \theta \le |\overrightarrow a {|^2} + |\overrightarrow b {|^2} + 2\overrightarrow a \cdot \overrightarrow b \]
\[ \Rightarrow |\overrightarrow a + \overrightarrow b {|^2} \le {\left( {|\overrightarrow a | + |\overrightarrow b |} \right)^2}\] (From (1))
Hence proved, \[|\overrightarrow a + \overrightarrow b {|^2} \le {\left( {|\overrightarrow a | + |\overrightarrow b |} \right)^2}\] .
38. Evaluate \[\mathbf{{\left( {\overrightarrow a \times \hat i} \right)^2} + {\left( {\overrightarrow a \times \hat j} \right)^2} + {\left( {\overrightarrow a \times \hat k} \right)^2}}\] .
Ans: Let \[\overrightarrow a = x\hat i + y\hat j + z\hat k\] .
So, \[\overrightarrow a \times \hat i = - y\hat k + z\hat j\]
\[\overrightarrow a \times \hat j = x\hat k - z\hat i\]
\[\overrightarrow a \times \hat k = - x\hat j + y\hat i\]
Now, \[{\left( {\overrightarrow a \times \hat i} \right)^2} + {\left( {\overrightarrow a \times \hat j} \right)^2} + {\left( {\overrightarrow a \times \hat k} \right)^2}\]
\[ \Rightarrow {y^2} + {z^2} + {x^2} + {z^2} + {x^2} + {y^2}\]
\[ \Rightarrow 2({x^2} + {y^2} + {z^2})\]
\[ \Rightarrow 2|\overrightarrow a {|^2}\]
Hence, \[{\left( {\overrightarrow a \times \hat i} \right)^2} + {\left( {\overrightarrow a \times \hat j} \right)^2} + {\left( {\overrightarrow a \times \hat k} \right)^2} = 2|\overrightarrow a {|^2}\] .
39. If \[\mathbf{\hat a}\] and \[\mathbf{\hat b}\] are unit vectors inclined at an angle \[\mathbf{\theta} \] then prove that:
i. \[\mathbf{\sin \frac{\theta }{2} = \frac{1}{2}\left| {\hat a - \hat b} \right|}\]
Ans: Taking \[|\hat a - \hat b{|^2} = \hat a \cdot \hat a + \hat b \cdot \hat b - 2\hat a \cdot \hat b\] :
\[ \Rightarrow |\hat a - \hat b{|^2} = |\hat a{|^2} + |\hat b{|^2} - 2|\hat a||\hat b|\cos \theta \]
\[ \Rightarrow |\hat a - \hat b{|^2} = 1 + 1 - 2(1)(1)\cos \theta \] (Since they are unit vectors, their magnitude is equal to one)
\[ \Rightarrow |\hat a - \hat b{|^2} = 2(1 - \cos \theta )\]
\[ \Rightarrow \frac{{|\hat a - \hat b{|^2}}}{2} = 1 - \cos \theta \]
\[ \Rightarrow \frac{{|\hat a - \hat b{|^2}}}{2} = 2{\sin ^2}\frac{\theta }{2}\]
\[ \Rightarrow \frac{{|\hat a - \hat b{|^2}}}{4} = {\sin ^2}\frac{\theta }{2}\]
\[ \Rightarrow \frac{{|\hat a - \hat b|}}{2} = \sin \frac{\theta }{2}\] ......(1)
Hence proved.
ii. \[\mathbf{\tan \frac{\theta }{2} = \left| {\frac{{\hat a - \hat b}}{{\hat a + \hat b}}} \right|}\]
Ans: Taking \[|\hat a + \hat b{|^2} = \hat a \cdot \hat a + \hat b \cdot \hat b + 2\hat a \cdot \hat b\] :
\[ \Rightarrow |\hat a + \hat b{|^2} = |\hat a{|^2} + |\hat b{|^2} + 2|\hat a||\hat b|\cos \theta \]
\[ \Rightarrow |\hat a + \hat b{|^2} = 1 + 1 + 2(1)(1)\cos \theta \] (Since they are unit vectors, their magnitude is equal to one)
\[ \Rightarrow |\hat a + \hat b{|^2} = 2(1 + \cos \theta )\]
\[ \Rightarrow \frac{{|\hat a + \hat b{|^2}}}{2} = 1 + \cos \theta \]
\[ \Rightarrow \frac{{|\hat a + \hat b{|^2}}}{2} = 2{\cos ^2}\frac{\theta }{2}\]
\[ \Rightarrow \frac{{|\hat a + \hat b{|^2}}}{4} = {\cos ^2}\frac{\theta }{2}\]
\[ \Rightarrow \frac{{|\hat a + \hat b|}}{2} = \cos \frac{\theta }{2}\] ......(2)
We know that \[\tan \frac{\theta }{2} = \frac{{\sin \frac{\theta }{2}}}{{\cos \frac{\theta }{2}}}\]
From (1) and (2) :
\[\tan \frac{\theta }{2} = \frac{{\frac{{|\hat a - \hat b|}}{2}}}{{\frac{{|\hat a + \hat b|}}{2}}}\]
\[\tan \frac{\theta }{2} = \left| {\frac{{\hat a - \hat b}}{{\hat a + \hat b}}} \right|\]
Hence proved.
40. For any two vectors, show that \[\mathbf{|\overrightarrow a \times \overrightarrow b | = \sqrt {{a^2}{b^2} - {{(\overrightarrow a \cdot \overrightarrow b )}^2}} }\] .
Ans: Taking \[|\overrightarrow a \times \overrightarrow b {|^2}\] :
\[|\overrightarrow a \times \overrightarrow b {|^2} = {\left( {|\overrightarrow a ||\overrightarrow b |\sin \theta } \right)^2}\]
\[ \Rightarrow |\overrightarrow a \times \overrightarrow b {|^2} = |\overrightarrow a {|^2}|\overrightarrow b {|^2}{\sin ^2}\theta \]
\[ \Rightarrow |\overrightarrow a \times \overrightarrow b {|^2} = |\overrightarrow a {|^2}|\overrightarrow b {|^2}(1 - {\cos ^2}\theta )\]
\[ \Rightarrow |\overrightarrow a \times \overrightarrow b {|^2} = |\overrightarrow a {|^2}|\overrightarrow b {|^2} - |\overrightarrow a {|^2}|\overrightarrow b {|^2}{\cos ^2}\theta \]
\[ \Rightarrow |\overrightarrow a \times \overrightarrow b {|^2} = |\overrightarrow a {|^2}|\overrightarrow b {|^2} - {(\overrightarrow a \cdot \overrightarrow b )^2}\]
\[ \Rightarrow |\overrightarrow a \times \overrightarrow b | = \sqrt {|\overrightarrow a {|^2}|\overrightarrow b {|^2} - {{(\overrightarrow a \cdot \overrightarrow b )}^2}} \]
Hence proved.
41. \[\mathbf{\overrightarrow a = \hat i + \hat j + \hat k}\] , \[\mathbf{\overrightarrow b = \hat i - \hat j + 2\hat k}\] and \[\mathbf{\overrightarrow c = x\hat i + (x - 2)\hat j - \hat k}\] . If \[\mathbf{\overrightarrow c }\] lies in the plane of \[\mathbf{\overrightarrow a }\] and \[\mathbf{\overrightarrow b }\] , then find the value of x .
Ans: We have \[\overrightarrow a = \hat i + \hat j + \hat k\] , \[\overrightarrow b = \hat i - \hat j + 2\hat k\] and \[\overrightarrow c = x\hat i + (x - 2)\hat j - \hat k\] .
Since vectors \[\overrightarrow a ,\overrightarrow b ,\overrightarrow c \] are co-planar, that is, lying on the same plane, hence their scalar product will be equal to zero.
\[ \Rightarrow [\overrightarrow a \cdot \overrightarrow b \cdot \overrightarrow c ] = 0\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}} 1&1&1\\ 1&{ - 1}&2\\ x&{x - 2}&{ - 1} \end{array}} \right| = 0\]
\[ \Rightarrow 1(1 - 2x + 4) - 1( - 1 - 2x) + 1(x - 2 + x) = 0\]
\[ \Rightarrow 5 - 2x + 1 + 2x - 2 + 2x = 0\]
\[ \Rightarrow 4 + 2x = 0\]
\[ \Rightarrow x = - 2\]
42. Prove that the angle between any two diagonals of a cube is \[\mathbf{{\cos ^{ - 1}}\left( {\frac{1}{3}} \right)}\] .
Ans: Let us first graphically represent a cube to prove the required:

Let a be the edge of the cube with its centre \[O\] at the origin. The diagonals of this cube are AD, OG, BE and CF.
Let us consider the diagonals AD and OG.
\[\overrightarrow {OG} = a\hat i + a\hat j + a\hat k\]
\[\overrightarrow {AD} = \overrightarrow {OD} - \overrightarrow {OA} \]
\[ \Rightarrow \overrightarrow {AD} = (0 - a)\hat i + (a - 0)\hat j + (a - 0)\hat k\]
\[ \Rightarrow \overrightarrow {AD} = - a\hat i + a\hat j + a\hat k\]
Now, let the angle between them be \[\theta \] :
\[\cos \theta = \frac{{\overrightarrow {AD} \cdot \overrightarrow {OG} }}{{|\overrightarrow {AD} ||\overrightarrow {OG} |}}\]
\[ \Rightarrow \cos \theta = \frac{{a( - a) + a(a) + a(a)}}{{\sqrt {{a^2} + {a^2} + {a^2}} \sqrt {{{( - a)}^2} + {a^2} + {a^2}} }}\]
\[ \Rightarrow \cos \theta = \frac{{ - {a^2} + {a^2} + {a^2}}}{{\sqrt {3{a^2}} \sqrt {3{a^2}} }}\]
\[ \Rightarrow \cos \theta = \frac{{{a^2}}}{{3{a^2}}}\]
\[ \Rightarrow \cos \theta = \frac{1}{3}\]
\[ \Rightarrow \theta = {\cos ^{ - 1}}\left( {\frac{1}{3}} \right)\]
Similarly, the angle between BE and CF will also be \[{\cos ^{ - 1}}\left( {\frac{1}{3}} \right)\] .
Hence proved.
43. Let \[\mathbf{\hat a,\hat b,\hat c}\] are unit vectors such that \[\mathbf{\hat a \cdot \hat b{\rm{ = }}\hat a \cdot \hat c = 0}\]and the angle between \[\mathbf{\hat b}\] and \[\mathbf{\hat c}\] is \[\mathbf{\frac{\pi }{6}}\] , then prove that \[\mathbf{\hat a = \pm 2(\hat b \times \hat c)}\] .
Ans: Since \[\hat a \cdot \hat b{\rm{ = }}\hat a \cdot \hat c = 0\] , it means that \[\hat a\] is perpendicular to both \[\hat b\] and \[\hat c\] .
This further implies that \[\hat a\] is perpendicular to the plane in which \[\hat b\] and \[\hat c\] lie.
Also, \[\hat b \times \hat c = |\hat b||\hat c|\sin \theta \hat n\] , where \[\theta \] is the angle between \[\hat b\] and \[\hat c\] , and \[\hat n\] is a unit vector perpendicular to the plane in which \[\hat b\] and \[\hat c\] lie.
\[ \Rightarrow \hat b \times \hat c = (1)(1)\sin \frac{\pi }{6}\hat a\]
(Since \[\hat b\] and \[\hat c\] are unit vectors, the angle between them is given to be \[\frac{\pi }{6}\] , and \[\hat a\] satisfies the conditions for \[\hat n\] )
\[ \Rightarrow \hat b \times \hat c = \sin \frac{\pi }{6}\hat a\]
\[ \Rightarrow \hat b \times \hat c = \frac{1}{2}\hat a\]
\[ \Rightarrow \hat a = \pm 2(\hat b \times \hat c)\]
Hence proved.
44. Prove that the normal vector to the plane containing three points with
position vectors \[\overrightarrow a \] , \[\overrightarrow b \] and \[\overrightarrow c \] lies in the direction of vector \[\overrightarrow b \times \overrightarrow c + \overrightarrow c \times \overrightarrow a + \overrightarrow a \times \overrightarrow b \] .
Ans: In a plane containing the vectors \[\overrightarrow a \] , \[\overrightarrow b \] and \[\overrightarrow c \] , let \[\overrightarrow n \] be its normal vector.
Therefore, \[\overrightarrow n = \lambda (\overrightarrow {AB} \times \overrightarrow {AC} )\] .
\[ \Rightarrow \overrightarrow n = \lambda [(\overrightarrow b - \overrightarrow a ) \times (\overrightarrow c - \overrightarrow a )]\]
\[ \Rightarrow \overrightarrow n = \lambda [(\overrightarrow b - \overrightarrow a ) \times \overrightarrow c - (\overrightarrow b - \overrightarrow a ) \times \overrightarrow a ]\] (By distributive property)
\[ \Rightarrow \overrightarrow n = \lambda (\overrightarrow b \times \overrightarrow c - \overrightarrow a \times \overrightarrow c - \overrightarrow b \times \overrightarrow a + \overrightarrow a \times \overrightarrow a )\]
\[ \Rightarrow \overrightarrow n = \lambda (\overrightarrow b \times \overrightarrow c + \overrightarrow c \times \overrightarrow a + \overrightarrow a \times \overrightarrow b + 0)\] (Since \[\overrightarrow a \times \overrightarrow a = 0\] , \[\overrightarrow a \times \overrightarrow c = - \overrightarrow c \times \overrightarrow a \] , \[\overrightarrow b \times \overrightarrow a = - \overrightarrow a \times \overrightarrow b \] )
\[ \Rightarrow \overrightarrow n = \lambda (\overrightarrow b \times \overrightarrow c + \overrightarrow c \times \overrightarrow a + \overrightarrow a \times \overrightarrow b )\]
Hence, we can say that \[\overrightarrow n \] lies in the direction of \[\overrightarrow b \times \overrightarrow c + \overrightarrow c \times \overrightarrow a + \overrightarrow a \times \overrightarrow b \] .
45. If \[\mathbf{\overrightarrow a }\] , \[\mathbf{\overrightarrow b }\] and \[\mathbf{\overrightarrow c }\] are position vectors of the vertices A, B and C of a triangle ABC, then show that the area of ABC is \[\mathbf{\frac{1}{2}\left| {\overrightarrow a \times \overrightarrow b + \overrightarrow b \times \overrightarrow c + \overrightarrow c \times \overrightarrow a } \right|}\] .
Ans: Let us consider a parallelogram ABCD:

Area of ABCD will be \[\overrightarrow {AB} \times \overrightarrow {AC} \] , that is, the product of two adjacent vectors.
Hence, area of \[ABC\] will be \[\frac{1}{2}\left( {\overrightarrow {AB} \times \overrightarrow {AC} } \right)\] .
\[ \Rightarrow \frac{1}{2}\left( {(\overrightarrow b - \overrightarrow a ) \times (\overrightarrow c - \overrightarrow a )} \right)\]
\[ \Rightarrow \frac{1}{2}\left( {(\overrightarrow b - \overrightarrow a ) \times \overrightarrow c - (\overrightarrow b - \overrightarrow a ) \times \overrightarrow a } \right)\]
\[ \Rightarrow \frac{1}{2}\left( {\overrightarrow b \times \overrightarrow c - \overrightarrow a \times \overrightarrow c - \overrightarrow b \times \overrightarrow a + \overrightarrow a \times \overrightarrow a } \right)\]
\[ \Rightarrow \frac{1}{2}\left( {\overrightarrow b \times \overrightarrow c + \overrightarrow c \times \overrightarrow a + \overrightarrow a \times \overrightarrow b + 0} \right)\] (Since \[\overrightarrow a \times \overrightarrow a = 0\] , \[\overrightarrow a \times \overrightarrow c = - \overrightarrow c \times \overrightarrow a \] , \[\overrightarrow b \times \overrightarrow a = - \overrightarrow a \times \overrightarrow b \] )
\[ \Rightarrow \frac{1}{2}\left( {\overrightarrow b \times \overrightarrow c + \overrightarrow c \times \overrightarrow a + \overrightarrow a \times \overrightarrow b } \right)\]
Hence proved.
46. If \[\mathbf{\overrightarrow a \times \overrightarrow b = \overrightarrow c \times \overrightarrow d }\] and \[\mathbf{\overrightarrow a \times \overrightarrow c = \overrightarrow b \times \overrightarrow d} \] , then prove that \[\mathbf{\overrightarrow a - \overrightarrow d} \] is parallel to \[\mathbf{\overrightarrow b - \overrightarrow c} \] provided \[\mathbf{\overrightarrow a \ne \overrightarrow d }\] and \[\mathbf{\overrightarrow b \ne \overrightarrow c }\] .
Ans: For vectors \[\overrightarrow a - \overrightarrow d \] and \[\overrightarrow b - \overrightarrow c \] to be parallel, their cross product must be equal to zero.
\[ \Rightarrow \left( {\overrightarrow a - \overrightarrow d } \right) \times \left( {\overrightarrow b - \overrightarrow c } \right) \]
\[ \Rightarrow (\overrightarrow a - \overrightarrow d ) \times \overrightarrow b - (\overrightarrow a - \overrightarrow d ) \times \overrightarrow c \]
\[ \Rightarrow \overrightarrow a \times \overrightarrow b - \overrightarrow d \times \overrightarrow b - \overrightarrow a \times \overrightarrow c + \overrightarrow d \times \overrightarrow c \]
\[ \Rightarrow \overrightarrow a \times \overrightarrow b + \overrightarrow b \times \overrightarrow d - \overrightarrow a \times \overrightarrow c - \overrightarrow c \times \overrightarrow d \] (Since \[ - \overrightarrow d \times \overrightarrow b = \overrightarrow b \times \overrightarrow d \] and \[\overrightarrow d \times \overrightarrow c = - \overrightarrow c \times \overrightarrow d \] )
\[ \Rightarrow 0\] (Since \[\overrightarrow a \times \overrightarrow b = \overrightarrow c \times \overrightarrow d \] and \[\overrightarrow a \times \overrightarrow c = \overrightarrow b \times \overrightarrow d \] )
Hence proved.
47. Dot product of a vector with vectors \[\mathbf{\hat i + \hat j - 3\hat k}\] , \[\mathbf{\hat i + 3\hat j - 2\hat k}\] and \[\mathbf{2\hat i + \hat j + 4\hat k}\] is 0 , 5 and 8 respectively. Find the vector.
Ans: Let the required vector be \[\overrightarrow h = x\hat i + y\hat j + z\hat k\] . We have given \[\overrightarrow a = \hat i + \hat j - 3\hat k\] , \[\overrightarrow b = \hat i + 3\hat j - 2\hat k\] , \[\overrightarrow c = 2\hat i + \hat j + 4\hat k\] and \[\overrightarrow a \cdot \overrightarrow h = 0\] , \[\overrightarrow b \cdot \overrightarrow h = 5\] , \[\overrightarrow c \cdot \overrightarrow h = 8\] .
Since \[\overrightarrow a \cdot \overrightarrow h = 0\] :
\[(\hat i + \hat j - 3\hat k) \cdot (x\hat i + y\hat j + z\hat k) = 0\]
\[ \Rightarrow x + y - 3z = 0\] ......(1)
Since \[\overrightarrow b \cdot \overrightarrow h = 5\] :
\[(\hat i + 3\hat j - 2\hat k) \cdot (x\hat i + y\hat j + z\hat k) = 5\]
\[ \Rightarrow x + 3y - 2z = 5\] ......(2)
Since \[\overrightarrow c \cdot \overrightarrow h = 8\] :
\[(2\hat i + \hat j + 4\hat k) \cdot (x\hat i + y\hat j + z\hat k) = 8\]
\[ \Rightarrow 2x + y + 4z = 8\] ......(3)
Subtract equation (1) from (2) :
\[\left( {x + 3y - 2z} \right) - \left( {x + y - 3z} \right) = 5\]
\[ \Rightarrow 2y + z = 5\]
\[ \Rightarrow y = \frac{{5 - z}}{2}\]
Subtract equation (1) from (3) :
\[\left( {2x + y + 4z} \right) - \left( {x + y - 3z} \right) = 8\]
\[ \Rightarrow x + 7z = 8\]
\[ \Rightarrow x = 8 - 7z\]
Substituting in (1) :
\[x + y - 3z = 0\]
\[ \Rightarrow 8 - 7z + \frac{{5 - z}}{2} - 3z = 0\]
\[ \Rightarrow 8 - 10z + \frac{{5 - z}}{2} = 0\]
\[ \Rightarrow \frac{{16 - 20z + 5 - z}}{2} = 0\]
\[ \Rightarrow \frac{{21 - 21z}}{2} = 0\]
\[ \Rightarrow 21 - 21z = 0\]
\[ \Rightarrow z = 1\]
Now, \[x = 8 - 7(1)\]
\[ \Rightarrow x = 1\]
Also, \[y = \frac{{5 - 1}}{2}\]
\[ \Rightarrow y = 2\]
Hence, we have \[\overrightarrow h = \hat i + 2\hat j + \hat k\] .
48. If \[\mathbf{\overrightarrow a = 5\hat i - \hat j + 7\hat k}\] , \[\mathbf{\hat b = \hat i - \hat j - \lambda \hat k}\] , find \[\mathbf{\lambda} \] such that \[\mathbf{\overrightarrow a + \overrightarrow b} \] and \[\mathbf{\overrightarrow a - \overrightarrow b }\] are orthogonal.
Ans: If \[\overrightarrow a + \overrightarrow b \] and \[\overrightarrow a - \overrightarrow b \] are orthogonal, it implies that their dot product is zero.
We find \[\overrightarrow a + \overrightarrow b \] :
\[\overrightarrow a + \overrightarrow b = (5\hat i - \hat j + 7\hat k) + (\hat i - \hat j - \lambda \hat k)\]
\[ \Rightarrow \overrightarrow a + \overrightarrow b = 6\hat i - 2\hat j + (7 - \lambda )\hat k\]
Similarly, we find \[\overrightarrow a - \overrightarrow b \] :
\[\overrightarrow a - \overrightarrow b = (5\hat i - \hat j + 7\hat k) - (\hat i - \hat j - \lambda \hat k)\]
\[ \Rightarrow \overrightarrow a - \overrightarrow b = 4\hat i + (7 + \lambda )\hat k\]
Now, \[(\overrightarrow a + \overrightarrow b ) \cdot (\overrightarrow a - \overrightarrow b ) = 0\] :
\[ \Rightarrow [6\hat i - 2\hat j + (7 - \lambda )\hat k] \cdot [4\hat i + (7 + \lambda )\hat k] = 0\]
\[ \Rightarrow 24 + 0 + 49 - {\lambda ^2} = 0\]
\[ \Rightarrow {\lambda ^2} = 73\]
\[ \Rightarrow \lambda = \sqrt {73} \]
49. Let \[\mathbf{\overrightarrow a }\] and \[\mathbf{\overrightarrow b }\] be vectors such that \[\mathbf{|\overrightarrow a | = |\overrightarrow b | = |\overrightarrow a - \overrightarrow b | = 1}\] , then find \[\mathbf{|\overrightarrow a + \overrightarrow b |}\] .
Ans: Let us take \[|\overrightarrow a - \overrightarrow b | = 1\] and square both sides:
\[ \Rightarrow |\overrightarrow a - \overrightarrow b {|^2} = {1^2}\]
\[ \Rightarrow |\overrightarrow a {|^2} + |\overrightarrow b {|^2} - 2\overrightarrow a \cdot \overrightarrow b = 1\]
\[ \Rightarrow 1 + 1 - 2(|\overrightarrow a ||\overrightarrow b |\cos \theta ) = 1\] (Since \[|\overrightarrow a | = |\overrightarrow b | = 1\] )
\[ \Rightarrow 2 - 2\cos \theta = 1\]
\[ \Rightarrow 2\cos \theta = 1\]
\[ \Rightarrow \cos \theta = \frac{1}{2}\]
Now, let us take \[|\overrightarrow a + \overrightarrow b |\]:
\[ \Rightarrow \sqrt {|\overrightarrow a {|^2} + |\overrightarrow b {|^2} + 2\overrightarrow a \cdot \overrightarrow b } \]
\[ \Rightarrow \sqrt {1 + 1 + 2(|\overrightarrow a ||\overrightarrow b |\cos \theta )} \] (Since \[|\overrightarrow a | = |\overrightarrow b | = 1\] )
\[ \Rightarrow \sqrt {2 + 2(\frac{1}{2})} \]
\[ \Rightarrow \sqrt {2 + 1} \]
\[ \Rightarrow \sqrt 3 \]
50. If \[\mathbf{|\overrightarrow a | = 2}\] , \[\mathbf{|\overrightarrow b | = 5}\] and \[\mathbf{\overrightarrow a \times \overrightarrow b = 2\hat i + \hat j - 2\hat k}\] , find the value of \[\mathbf{\overrightarrow a \cdot \overrightarrow b} \] .
Ans: Let us find \[|\overrightarrow a \times \overrightarrow b |\] , given that \[\overrightarrow a \times \overrightarrow b = 2\hat i + \hat j - 2\hat k\] :
\[ \Rightarrow |\overrightarrow a \times \overrightarrow b | = \sqrt {{2^2} + {1^2} + {{( - 2)}^2}} \]
\[ \Rightarrow |\overrightarrow a \times \overrightarrow b | = \sqrt 9 \]
\[ \Rightarrow |\overrightarrow a \times \overrightarrow b | = 3\]
Now, \[|\overrightarrow a \times \overrightarrow b | = |\overrightarrow a ||\overrightarrow b |\sin \theta \]
\[ \Rightarrow 3 = (2)(5)\sin \theta \]
\[ \Rightarrow \sin \theta = \frac{3}{{10}}\]
Now, \[\overrightarrow a \cdot \overrightarrow b = |\overrightarrow a ||\overrightarrow b |\cos \theta \] :
\[ \Rightarrow \overrightarrow a \cdot \overrightarrow b = (2)(5)\cos ({\sin ^{ - 1}}\frac{3}{{10}})\]
\[ \Rightarrow \overrightarrow a \cdot \overrightarrow b = (2)(5)\cos ({\sin ^{ - 1}}\frac{3}{{10}})\]
\[ \Rightarrow \overrightarrow a \cdot \overrightarrow b = 10\cos ({\cos ^{ - 1}}\sqrt {1 - {{\left( {\frac{3}{{10}}} \right)}^2}} )\] (Since \[{\sin ^{ - 1}}x = {\cos ^{ - 1}}\sqrt {1 - {x^2}} \] )
\[ \Rightarrow \overrightarrow a \cdot \overrightarrow b = 10\sqrt {\frac{{91}}{{100}}} \]
\[ \Rightarrow \overrightarrow a \cdot \overrightarrow b = \sqrt {91} \]
51. \[\mathbf{\overrightarrow a ,\overrightarrow b ,\overrightarrow c }\] are three vectors such that \[\mathbf{\overrightarrow b \times \overrightarrow c = \overrightarrow a }\] and \[\mathbf{\overrightarrow a \times \overrightarrow b = \overrightarrow c} \] . Prove that \[\mathbf{\overrightarrow a ,\overrightarrow b ,\overrightarrow c }\] are mutually perpendicular to each other and \[\mathbf{|\overrightarrow b | = 1}\] , \[\mathbf{|\overrightarrow c | = |\overrightarrow a |}\] .
Ans: We know that \[\overrightarrow b \times \overrightarrow c = \overrightarrow a \] and \[\overrightarrow a \times \overrightarrow b = \overrightarrow c \] .
Since \[\overrightarrow b \times \overrightarrow c = \overrightarrow a \] , we can say that \[\overrightarrow b \bot \overrightarrow a \] and \[\overrightarrow c \bot \overrightarrow a \] .
Similarly, since \[\overrightarrow a \times \overrightarrow b = \overrightarrow c \] , we conclude that \[\overrightarrow a \bot \overrightarrow c \] and \[\overrightarrow b \bot \overrightarrow c \] .
From above statements, we can observe that \[\overrightarrow a \bot \overrightarrow b \] , \[\overrightarrow b \bot \overrightarrow c \] , \[\overrightarrow a \bot \overrightarrow c \] , that is, all three vectors are mutually perpendicular.
Now, we have \[\overrightarrow a \times \overrightarrow b = \overrightarrow c \] .
\[ \Rightarrow |\overrightarrow a \times \overrightarrow b | = |\overrightarrow c |\]
\[ \Rightarrow |\overrightarrow a ||\overrightarrow b |\sin \theta = |\overrightarrow c |\]
\[ \Rightarrow |\overrightarrow a ||\overrightarrow b |\sin \frac{\pi }{2} = |\overrightarrow c |\] (Since vectors are mutually perpendicular, they are at a right angle with each other)
\[ \Rightarrow |\overrightarrow a ||\overrightarrow b | = |\overrightarrow c |\] (Since \[\sin \frac{\pi }{2} = 1\] ) ......(1)
Similarly, we have \[\overrightarrow b \times \overrightarrow c = \overrightarrow a \] .
\[ \Rightarrow |\overrightarrow b \times \overrightarrow c | = |\overrightarrow a |\]
\[ \Rightarrow |\overrightarrow b ||\overrightarrow c |\sin \theta = |\overrightarrow a |\]
\[ \Rightarrow |\overrightarrow b ||\overrightarrow c |\sin \frac{\pi }{2} = |\overrightarrow a |\] (Since vectors are mutually perpendicular, they are at a right angle with each other)
\[ \Rightarrow |\overrightarrow b ||\overrightarrow c | = |\overrightarrow a |\] (Since \[\sin \frac{\pi }{2} = 1\] ) ......(2)
Divide (2) by (1) :
\[ \Rightarrow \frac{{|\overrightarrow a ||\overrightarrow b |}}{{|\overrightarrow b ||\overrightarrow c |}} = \frac{{|\overrightarrow c |}}{{|\overrightarrow a |}}\]
\[ \Rightarrow \frac{{|\overrightarrow a |}}{{|\overrightarrow c |}} = \frac{{|\overrightarrow c |}}{{|\overrightarrow a |}}\]
\[ \Rightarrow |\overrightarrow a {|^2} = |\overrightarrow c {|^2}\]
\[ \Rightarrow |\overrightarrow a | = |\overrightarrow c |\] ......(3)
Substituting (3) in (2) :
\[|\overrightarrow b ||\overrightarrow a | = |\overrightarrow a |\]
\[ \Rightarrow |\overrightarrow b | = 1\]
Hence proved.
52. If \[\mathbf{\overrightarrow a = 2\hat i - 3\hat j}\] , \[\mathbf{\overrightarrow b = \hat i + \hat j - \hat k}\] and \[\mathbf{\overrightarrow c = 3\hat i - \hat k}\] , find \[\mathbf{[\overrightarrow a \overrightarrow b \overrightarrow c ]}\] .
Ans: It is given that \[\overrightarrow a = 2\hat i - 3\hat j\] , \[\overrightarrow b = \hat i + \hat j - \hat k\] and \[\overrightarrow c = 3\hat i - \hat k\] .
We know that \[[\overrightarrow a \overrightarrow b \overrightarrow c ] = \left( {\begin{array}{*{20}{c}} {{a_1}}&{{a_2}}&{{a_3}}\\ {{b_1}}&{{b_2}}&{{b_3}}\\ {{c_1}}&{{c_2}}&{{c_3}} \end{array}} \right)\]
\[ \Rightarrow [\overrightarrow a \overrightarrow b \overrightarrow c ] = \left( {\begin{array}{*{20}{c}} 2&{ - 3}&0\\ 1&1&{ - 1}\\ 3&0&{ - 1} \end{array}} \right)\]
\[ \Rightarrow [\overrightarrow a \overrightarrow b \overrightarrow c ] = 2( - 1) + 3( - 1 + 3) + 0\]
\[ \Rightarrow [\overrightarrow a \overrightarrow b \overrightarrow c ] = - 2 + 6\]
\[ \Rightarrow [\overrightarrow a \overrightarrow b \overrightarrow c ] = 4\]
53. Find volume of parallelepiped whose coterminous edges are given by vectors \[\mathbf{\overrightarrow a = 2\hat i + 3\hat j + 4\hat k}\] , \[\mathbf{\overrightarrow b = \hat i + 2\hat j - \hat k}\] and \[\mathbf{\overrightarrow c = 3\hat i - \hat j + 2\hat k}\] .
Ans: To find the volume of parallelepiped whose coterminous edges are given by vectors \[\overrightarrow a = 2\hat i + 3\hat j + 4\hat k\] , \[\overrightarrow b = \hat i + 2\hat j - \hat k\] and \[\overrightarrow c = 3\hat i - \hat j + 2\hat k\] , we simply take the scalar triple product of them:
\[[\overrightarrow a \overrightarrow b \overrightarrow c ] = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{a_2}}&{{a_3}}\\ {{b_1}}&{{b_2}}&{{b_3}}\\ {{c_1}}&{{c_2}}&{{c_3}} \end{array}} \right|\]
\[ \Rightarrow [\overrightarrow a \overrightarrow b \overrightarrow c ] = \left| {\begin{array}{*{20}{c}} 2&3&4\\ 1&2&{ - 1}\\ 3&{ - 1}&2 \end{array}} \right|\]
\[ \Rightarrow [\overrightarrow a \overrightarrow b \overrightarrow c ] = \left| {2(3) - 3(5) + 4( - 7)} \right|\]
\[ \Rightarrow [\overrightarrow a \overrightarrow b \overrightarrow c ] = \left| {6 - 15 - 28} \right|\]
\[ \Rightarrow [\overrightarrow a \overrightarrow b \overrightarrow c ] = \left| { - 37} \right|\]
Hence, the volume of parallelepiped is \[37\] cubic units.
54. Find the value of \[\lambda \] such that \[\mathbf{\overrightarrow a = \hat i - \hat j + \hat k}\] , \[\mathbf{\overrightarrow b = 2\hat i + \hat j - \hat k}\] and \[\mathbf{\overrightarrow c = \lambda \hat i - \hat j + \lambda \hat k}\] are coplanar.
Ans: When three vectors are coplanar, their scalar triple product is zero.
We have \[\overrightarrow a = \hat i - \hat j + \hat k\] , \[\overrightarrow b = 2\hat i + \hat j - \hat k\] and \[\overrightarrow c = \lambda \hat i - \hat j + \lambda \hat k\] .
\[[\overrightarrow a \overrightarrow b \overrightarrow c ] = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{a_2}}&{{a_3}}\\ {{b_1}}&{{b_2}}&{{b_3}}\\ {{c_1}}&{{c_2}}&{{c_3}} \end{array}} \right|\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}} 1&{ - 1}&1\\ 2&1&{ - 1}\\ \lambda &{ - 1}&\lambda \end{array}} \right| = 0\]
\[ \Rightarrow \left| {(\lambda - 1) + (2\lambda + \lambda ) + ( - 2 - \lambda )} \right| = 0\]
\[ \Rightarrow \left| {(3\lambda - 3)} \right| = 0\]
\[ \Rightarrow \lambda = 1\]
55. Show that the four points \[\mathbf{\left( {--1,{\rm{ }}4,{\rm{ }}--3} \right)}\] , \[\mathbf{\left( {3,{\rm{ }}2,{\rm{ }}--5} \right)}\] , \[\mathbf{\left( {--3,{\rm{ }}8,{\rm{ }}--5} \right)}\] , \[\mathbf{\left( {--3,{\rm{ }}2,{\rm{ }}1} \right)}\] are coplanar.
Ans: Given the four points A \[\left( {--1,{\rm{ }}4,{\rm{ }}--3} \right)\] , B \[\left( {3,{\rm{ }}2,{\rm{ }}--5} \right)\] , C \[\left( {3,{\rm{ }}2,{\rm{ }}--5} \right)\] , D \[\left( {--3,{\rm{ }}2,{\rm{ }}1} \right)\] :
Now, \[\overrightarrow {AB} = \overrightarrow b - \overrightarrow a \]
\[ \Rightarrow \overrightarrow {AB} = 4\hat i - 2\hat j - 2\hat k\]
\[\overrightarrow {AC} = \overrightarrow c - \overrightarrow a \]
\[ \Rightarrow \overrightarrow {AC} = - 2\hat i + 4\hat j - 2\hat k\]
\[\overrightarrow {AD} = \overrightarrow d - \overrightarrow a \]
\[ \Rightarrow \overrightarrow {AD} = - 2\hat i - 2\hat j + 4\hat k\]
For the points A, B, C and D to be coplanar, we need to show that vectors \[\overrightarrow {AB} ,\overrightarrow {AC} \overrightarrow {,AD} \] are coplanar, that is, their triple product should be equal to zero.
\[[\overrightarrow {AB} \overrightarrow {AC} \overrightarrow {AD} ] = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{a_2}}&{{a_3}}\\ {{b_1}}&{{b_2}}&{{b_3}}\\ {{c_1}}&{{c_2}}&{{c_3}} \end{array}} \right|\]
\[ \Rightarrow [\overrightarrow {AB} \overrightarrow {AC} \overrightarrow {AD} ] = \left| {\begin{array}{*{20}{c}} 4&{ - 2}&{ - 2}\\ { - 2}&4&{ - 2}\\ { - 2}&{ - 2}&4 \end{array}} \right|\]
\[ \Rightarrow [\overrightarrow {AB} \overrightarrow {AC} \overrightarrow {AD} ] = \left| {4(12) + 2( - 12) - 2(12)} \right|\]
\[ \Rightarrow [\overrightarrow {AB} \overrightarrow {AC} \overrightarrow {AD} ] = \left| {48 - 24 - 24} \right|\]
\[ \Rightarrow [\overrightarrow {AB} \overrightarrow {AC} \overrightarrow {AD} ] = 0\]
Hence proved.
56. For any three vectors \[\mathbf{\overrightarrow a ,\overrightarrow b ,\overrightarrow c} \] prove that \[\mathbf{[\overrightarrow a + \overrightarrow b \cdot \overrightarrow b + \overrightarrow c \cdot \overrightarrow c + \overrightarrow a ] = 2[\overrightarrow a \cdot \overrightarrow b \cdot \overrightarrow c ]}\] .
Ans: Let us consider \[[\overrightarrow a + \overrightarrow b \cdot \overrightarrow b + \overrightarrow c \cdot \overrightarrow c + \overrightarrow a ]\] :
\[ \Rightarrow (\overrightarrow a + \overrightarrow b ) \cdot [(\overrightarrow b + \overrightarrow c ) \times (\overrightarrow c + \overrightarrow a )]\]
\[ \Rightarrow (\overrightarrow a + \overrightarrow b ) \cdot (\overrightarrow b \times \overrightarrow c + \overrightarrow c \times \overrightarrow c + \overrightarrow b \times \overrightarrow a + \overrightarrow c \times \overrightarrow a )\]
\[ \Rightarrow (\overrightarrow a + \overrightarrow b ) \cdot (\overrightarrow b \times \overrightarrow c + \overrightarrow b \times \overrightarrow a + \overrightarrow c \times \overrightarrow a )\] (Since \[\overrightarrow c \times \overrightarrow c = 0\] )
\[ \Rightarrow \overrightarrow a \cdot (\overrightarrow b \times \overrightarrow c ) + \overrightarrow b \cdot (\overrightarrow b \times \overrightarrow c ) + \overrightarrow a \cdot (\overrightarrow b \times \overrightarrow a ) + \overrightarrow b \cdot (\overrightarrow b \times \overrightarrow a ) + \overrightarrow a \cdot (\overrightarrow c \times \overrightarrow a ) + \overrightarrow b \cdot (\overrightarrow c \times \overrightarrow a )\]
\[ \Rightarrow \overrightarrow a \cdot (\overrightarrow b \times \overrightarrow c ) + \overrightarrow b \cdot (\overrightarrow c \times \overrightarrow a )\] (Since \[\overrightarrow b \cdot (\overrightarrow b \times \overrightarrow c ) = \overrightarrow a \cdot (\overrightarrow b \times \overrightarrow a ) = \overrightarrow b \cdot (\overrightarrow b \times \overrightarrow a ) = \overrightarrow a \cdot (\overrightarrow c \times \overrightarrow a ) = 0\] )
\[ \Rightarrow \overrightarrow a \cdot (\overrightarrow b \times \overrightarrow c ) + \overrightarrow a \cdot (\overrightarrow b \times \overrightarrow c )\] (Since \[\overrightarrow b \cdot (\overrightarrow c \times \overrightarrow a ) = \overrightarrow a \cdot (\overrightarrow b \times \overrightarrow c )\] )
\[ \Rightarrow 2[\overrightarrow a \overrightarrow b \overrightarrow c ]\]
Hence proved.
57. For any three vectors \[\mathbf{\overrightarrow a ,\overrightarrow b ,\overrightarrow c }\] prove that \[\mathbf{\overrightarrow a - \overrightarrow b ,\overrightarrow b - \overrightarrow c ,\overrightarrow c - \overrightarrow a }\] are coplanar.
Ans: For \[\overrightarrow a - \overrightarrow b ,\overrightarrow b - \overrightarrow c ,\overrightarrow c - \overrightarrow a \] to be coplanar, their scalar product should be equal to zero.
\[ \Rightarrow [\overrightarrow a - \overrightarrow b \cdot \overrightarrow b - \overrightarrow c \cdot \overrightarrow c - \overrightarrow a ]\]
\[ \Rightarrow (\overrightarrow a - \overrightarrow b ) \cdot [(\overrightarrow b - \overrightarrow c ) \times (\overrightarrow c - \overrightarrow a )]\]
\[ \Rightarrow (\overrightarrow a - \overrightarrow b ) \cdot (\overrightarrow b \times \overrightarrow c - \overrightarrow c \times \overrightarrow c - \overrightarrow b \times \overrightarrow a + \overrightarrow c \times \overrightarrow a )\]
\[ \Rightarrow (\overrightarrow a - \overrightarrow b ) \cdot (\overrightarrow b \times \overrightarrow c - \overrightarrow b \times \overrightarrow a + \overrightarrow c \times \overrightarrow a )\] (Since \[\overrightarrow c \times \overrightarrow c = 0\] )
\[ \Rightarrow \overrightarrow a \cdot (\overrightarrow b \times \overrightarrow c ) - \overrightarrow b \cdot (\overrightarrow b \times \overrightarrow c ) - \overrightarrow a \cdot (\overrightarrow b \times \overrightarrow a ) + \overrightarrow b \cdot (\overrightarrow b \times \overrightarrow a ) + \overrightarrow a \cdot (\overrightarrow c \times \overrightarrow a ) - \overrightarrow b \cdot (\overrightarrow c \times \overrightarrow a )\]
\[ \Rightarrow \overrightarrow a \cdot (\overrightarrow b \times \overrightarrow c ) - \overrightarrow b \cdot (\overrightarrow c \times \overrightarrow a )\] (Since \[\overrightarrow b \cdot (\overrightarrow b \times \overrightarrow c ) = \overrightarrow a \cdot (\overrightarrow b \times \overrightarrow a ) = \overrightarrow b \cdot (\overrightarrow b \times \overrightarrow a ) = \overrightarrow a \cdot (\overrightarrow c \times \overrightarrow a ) = 0\] )
\[ \Rightarrow [\overrightarrow a \overrightarrow b \overrightarrow c ] - [\overrightarrow a \overrightarrow b \overrightarrow c ]\] (Since \[\overrightarrow b \cdot (\overrightarrow c \times \overrightarrow a ) = \overrightarrow a \cdot (\overrightarrow b \times \overrightarrow c )\] )
\[ \Rightarrow 0\]
Hence proved.
Related Study Materials for Class 12 Maths Chapter 10 Vector Algebra
S. No | Study Materials for Class 12 Maths Chapter 10 Vector Algebra |
1. | |
2. | |
3. | CBSE Class 12 Maths Chapter 10 Vector Algebra NCERT Exemplar |
CBSE Class 12 Maths Chapter-wise Important Questions
CBSE Class 12 Maths Chapter-wise Important Questions and Answers cover topics from all 13 chapters, helping students prepare thoroughly by focusing on key topics for easier revision.
S. No | Chapter-wise Important Questions for Class 12 Maths |
1 | |
2 | Chapter 2 - Inverse Trigonometric Functions Important Questions |
3 | |
4 | |
5 | Chapter 5 - Continuity and Differentiability Important Questions |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 |
Additional Study Materials for Class 12 Maths
S.No | Study Materials for Class 12 Maths |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 |
FAQs on Important Questions for CBSE Class 12 Maths Chapter 10 - Vector Algebra 2024-25
1. What are the most important types of vector-related questions that CBSE Class 12 students should expect from Chapter 10: Vector Algebra in the 2025–26 board exams?
- Conceptual MCQs based on vector definitions, direction cosines, and vector notations
- 3-mark and 5-mark problems requiring calculation of vector sums, scalar (dot) and vector (cross) products
- Section formula, components of vectors, and problems involving trisection or division of a line in a given ratio
- Questions involving geometric application: parallelogram area, triangle area via cross product
- Proof and reasoning-based HOTS (Higher Order Thinking Skills) on vector coplanarity, scalar triple product, and application in three-dimensional geometry
2. How is the marking scheme distributed for Vector Algebra questions in CBSE Class 12 board exam papers?
- Very short answer (VSA): 1-mark per question - direct, factual or formula-based
- Short answer (SA): 2-4 marks per question - involves computations or brief proofs
- Long answer (LA): 5-6 marks - multi-step, application-based or HOTS problems
3. Why is understanding both vector addition and vector product important for board exam success in Class 12 Vector Algebra?
Vector addition is the basis for constructing resultant vectors and analyzing geometric relationships, while the vector (cross) product is crucial for solving area, perpendicularity, and direction problems. Both are core to board exam HOTS and application questions, and missing either can lead to concept gaps and loss of marks.
4. What are common conceptual mistakes students make in Vector Algebra Class 12 important questions, and how can they be avoided?
- Confusing scalar and vector products: Always recall that dot product gives a scalar, cross product gives a vector
- Incorrect vector components: Careful calculation of direction cosines and final vector directions is vital
- Misapplication of section/ratio formulas: Watch numerator-denominator order and ratio sense
- Forgetting units or directions in answers (especially for geometric quantities like area or angles)
- Not proving coplanarity or orthogonality when required—always use the proper determinant or dot/cross product
5. What is the significance of the scalar triple product in Vector Algebra, and in which types of board questions does it appear most?
The scalar triple product [a b c] is used to check if three vectors are coplanar (result is zero) and to calculate volumes of parallelepipeds (result gives the value). It frequently appears in 4- or 5-mark reasoning questions about coplanarity and 3D geometry in CBSE Class 12 Maths exams.
6. How can I effectively solve HOTS (Higher Order Thinking Skills) questions in Class 12 Vector Algebra?
- Break down the question into knowns/unknowns and draw a diagram if possible
- Apply vector addition and product properties correctly; check if components, direction, or magnitude is needed
- Whenever vectors are perpendicular, set their dot product to zero; for parallelism, set direction ratios equal
- For geometric proofs (area, coplanarity), always build from vector identities and explain each step
- Practice with previous year and exemplar HOTS questions for exposure to new patterns
7. What are some examples of real-world applications of Vector Algebra that may be asked as conceptual or HOTS questions in Class 12 exams?
Commonly illustrated applications include:
- Calculating force and velocity directions in physics and engineering
- Applying vectors in determining resultant displacement in navigation or aviation
- Finding the shortest distance between skew lines (important in 3D geometry and civil engineering problems)
- Area computation for construction, network pipes, and other civil/mechanical engineering cases
8. How do you identify and approach "expected" or frequently asked important questions from Chapter 10 Vector Algebra for CBSE?
- Review CBSE sample papers and previous year board questions—focus on repeated patterns
- Prioritize vector geometry, section/ratio formulas, scalar and vector products, coplanarity/orthogonality proofs
- Practice both one-marker factual/definition-based and long-form proofs/mechanical applications
- Consult Vedantu's and NCERT Exemplar's important questions, which filter the most relevant board-type problems
9. What is a reliable strategy to manage time for important Vector Algebra questions in the Maths board exam?
- Quickly solve 1-mark and 2-mark questions first (definitions, easy calculations)
- Allocate uninterrupted blocks for HOTS/LA vector questions—these require stepwise justification
- Underline vector properties used and always box the final answer (with units/direction where needed)
- Revisit and recheck cross products, scalar triple products, and determinant evaluations for calculation errors
10. In what ways do Class 12 Vector Algebra important questions evolve each year, and how can students stay updated for 2025–26?
- Each year, new HOTS and application-based formats are being added: more real-life context and multi-step reasoning questions
- Expected shift toward less-repetitive direct sums and more logic-based or multiple concept integration problems
- Stay updated via yearly CBSE sample paper analysis and teacher-compiled important question sets (Vedantu, NCERT Exemplar)
- Regularly practice with updated mock papers and attend board revision sessions for the latest trend insight
11. How can students maximize their marks on important questions about vector coplanarity, parallelism, and perpendicularity?
- Coplanarity: Always use the scalar triple product determinant and comment on result (zero for coplanarity)
- Parallelism: Compare and equate ratios of direction cosines/components
- Perpendicularity: Dot product must be zero—explicitly show calculation
- Support every step with the correct property/formula, not just the answer
12. What is the best approach to differentiate between "important" exam questions and basic practice questions from Vector Algebra?
Important exam questions typically require multi-step reasoning, logical proof, or application of two or more vector concepts together (e.g., area + direction ratios, or geometry + algebra). Basic questions are usually direct applications of formulas without much deduction. For board prep, focus on questions labeled as HOTS, frequently asked, or those mirroring CBSE sample/previous year patterns.
13. Can understanding Vector Algebra help in other chapters or competitive exams beyond Class 12 boards?
Yes, vector concepts are foundational for Three-Dimensional Geometry (next chapter), Physics (especially for force, motion, and fields), and entrance exams like JEE/NEET, where application and vectors reasoning form the basis for many high-weightage questions.
14. What is a typical 5-mark Vector Algebra board exam question that covers high-weightage concepts?
A common example:
- Prove that a set of three given points are collinear/coplanar using vector methods, with all working steps for the scalar triple product, or
- Calculate the area of a triangle or parallelogram defined by three vectors, explaining each formula and substitution,
15. What are the latest topic trends in CBSE Class 12 Vector Algebra important questions, as per 2025–26 pattern?
- Mix of application-based vector geometry (distance, area), and higher-order conceptual proofs (coplanarity, direction, ratio section)
- Reasoning-based questions explaining why two vectors are parallel/orthogonal, not just calculation
- Situational problems linking physics or engineering scenarios with vector calculations
- Emphasis on process-based marking: showing reasoning, not just calculation

















