Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

CBSE Class 12 Maths Important Questions

ffImage
widget title icon
Latest Updates

widget icon
Enrol Now :
JEE Test Series
widget icon
Grab Your Seat :
JEE Pro Course
widget icon
Register Today :
JEE One to One Coaching

Important Questions and Answers for CBSE Maths Class 12 - FREE PDF Download

CBSE Class 12 Maths Important Questions are designed to help students focus on key topics needed for their exams according to the CBSE Class 12 Maths Syllabus. These questions cover essential concepts from various chapters, making it easier to revise and practice. By working through these important questions, students can build their confidence and improve their problem-solving skills. This resource is valuable for both quick revisions and in-depth study, ensuring that students are well-prepared to tackle their exams successfully.

toc-symbol
Table of Content
1. Important Questions and Answers for CBSE Maths Class 12 - FREE PDF Download
2. CBSE Class 12 Maths Chapter-wise Important Questions
3. 10 Most Important Questions From Class 12 Maths Chapters
4. How do Maths Important Questions Class 12 Help You with Exams?
5. Additional Study Materials for Class 12 Maths 
FAQs


CBSE Class 12 Maths Chapter-wise Important Questions

CBSE Class 12 Maths Chapter-wise Important Questions and Answers cover topics from all 13 chapters, helping students prepare thoroughly by focusing on key topics for easier revision.


Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

10 Most Important Questions From Class 12 Maths Chapters

1. Show that each of the relation $\text{R}$ in the set \[\text{A =  }\!\!\{\!\!\text{ x}\in \text{z: 0}\le \text{x}\le \text{12 }\!\!\}\!\!\text{ }\] , is an equivalence relation. Find the set of all elements related to 1 in each case.

  1. \[\text{R =  }\!\!\{\!\!\text{ }\left( \text{a, b} \right)\text{ : }\left| \text{a -- b} \right|\] is a multiple of \[\text{4 }\!\!\}\!\!\text{ }\]

Ans: The given set \[\text{A =  }\!\!\{\!\!\text{ x}\in \text{Z: 0}\le \text{x}\le \text{12 }\!\!\}\!\!\text{  = }\left\{ \text{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} \right\}\] 

The given relation is: \[\text{R =  }\!\!\{\!\!\text{ }\left( \text{a, b} \right)\text{ : }\left| \text{a -- b} \right|\] is a multiple of \[\text{4 }\!\!\}\!\!\text{ }\].

Let \[a\in A\],

\[\left( \text{a, a} \right)\in R\] as \[\left| \text{a-a} \right|\text{=0}\] is a multiple of \[\text{4}\].

Therefore, \[\text{R}\] is reflexive.

Let, \[\left( \text{a, b} \right)\in \text{R}\Rightarrow \left| \text{a-b} \right|\] is a multiple of \[\text{4}\].

\[\Rightarrow \left| \text{-}\left( \text{a-b} \right) \right|\text{=}\left| \text{b-a} \right|\] is a multiple of \[\text{4}\].

\[\Rightarrow \left( \text{b, a} \right)\in \text{R}\]

Therefore \[\text{R}\] is symmetric.

\[\left( \text{a, b} \right)\text{, }\left( \text{b, c} \right)\in R\].

\[\Rightarrow \left| \text{a-b} \right|\] is a multiple of \[\text{4}\] and \[\left| \text{b-c} \right|\] is a multiple of \[\text{4}\].

\[\Rightarrow \left( \text{a-b} \right)\] is a multiple of \[\text{4}\] and \[\left( \text{b-c} \right)\] is a multiple of \[\text{4}\].

\[\Rightarrow \left( \text{a-c} \right)\text{=}\left( \text{a-b} \right)\text{+}\left( \text{b-c} \right)\] is a multiple of \[\text{4}\].

\[\Rightarrow \left| \text{a-c} \right|\] is a multiple of \[\text{4}\].

\[\Rightarrow \left( \text{a, c} \right)\in \text{R}\]

Therefore, \[\text{R}\] is transitive.

Therefore, the given relation \[\text{R}\] is an equivalence relation.

The set of elements related to 1 is \[\left\{ \text{1, }\!\!~\!\!\text{ 5, 9} \right\}\] 


2. Evaluate \[\text{tan}\left( \text{si}{{\text{n}}^{\text{-1}}}\frac{\text{3}}{\text{5}}\text{+co}{{\text{t}}^{\text{-1}}}\frac{\text{3}}{\text{2}} \right)\]

Ans: Assuming $\text{si}{{\text{n}}^{\text{-1}}}\frac{\text{3}}{\text{5}}\text{=a}$

$\text{si}{{\text{n}}^{\text{-1}}}\frac{\text{3}}{\text{5}}\text{=a} $ 

$ \text{sin a=}\frac{\text{3}}{\text{5}} $ 

$ \text{cos a=}\sqrt{\text{1-}{{\left( \frac{\text{3}}{\text{5}} \right)}^{\text{2}}}} $ 

$ \text{cos a=}\frac{\text{4}}{\text{5}} $ 

$ \text{tan a=}\frac{\text{3}}{\text{4}} $ 

$ \text{a=ta}{{\text{n}}^{\text{-1}}}\left( \frac{\text{3}}{\text{4}} \right) $ 

$\text{si}{{\text{n}}^{\text{-1}}}\left( \frac{\text{3}}{\text{5}} \right)\text{=ta}{{\text{n}}^{\text{-1}}}\left( \frac{\text{3}}{\text{4}} \right)$ ----(1)

$\text{co}{{\text{t}}^{\text{-1}}}\frac{\text{3}}{\text{2}}\text{=ta}{{\text{n}}^{\text{-1}}}\frac{\text{2}}{\text{3}}$ -----(2)

Further solving, 

$ \text{tan}\left( \text{si}{{\text{n}}^{\text{-1}}}\frac{\text{3}}{\text{5}}\text{+co}{{\text{t}}^{\text{-1}}}\frac{\text{3}}{\text{2}} \right) $ 

 $ \text{=tan}\left( \text{ta}{{\text{n}}^{\text{-1}}}\frac{\text{3}}{\text{4}}\text{+ta}{{\text{n}}^{\text{-1}}}\frac{\text{2}}{\text{3}} \right) $ 

 $\text{=tan}\left( \text{ta}{{\text{n}}^{\text{-1}}}\frac{\frac{\text{3}}{\text{4}}\text{+}\frac{\text{2}}{\text{3}}}{\text{1-}\left( \frac{\text{3}}{\text{4}}\text{ }\!\!\times\!\!\text{ }\frac{\text{2}}{\text{3}} \right)} \right) $ 

$ \text{=tan}\left( \text{ta}{{\text{n}}^{\text{-1}}}\frac{\text{17}}{\text{6}} \right) $ 

$ \text{=}\frac{\text{17}}{\text{6}} $ 

Therefore, $\text{tan}\left( \text{si}{{\text{n}}^{\text{-1}}}\frac{\text{3}}{\text{5}}\text{+co}{{\text{t}}^{\text{-1}}}\frac{\text{3}}{\text{2}} \right)\text{=}\frac{\text{17}}{\text{6}}$


If \[A=\left[ \begin{matrix}  1 & 1 & 1  \\   1 & 1 & 1  \\   1 & 1 & 1  \\ \end{matrix} \right]\] , prove that \[{{A}^{n}}=\left[ \begin{matrix}   {{3}^{n-1}} & {{3}^{n-1}} & {{3}^{n-1}}  \\   {{3}^{n-1}} & {{3}^{n-1}} & {{3}^{n-1}}  \\   {{3}^{n-1}} & {{3}^{n-1}} & {{3}^{n-1}}  \\ \end{matrix} \right]\] , \[n\in N\].

Ans: Given \[A=\left[ \begin{matrix}   1 & 1 & 1  \\   1 & 1 & 1  \\   1 & 1 & 1  \\ \end{matrix} \right]\]

By using the principles of mathematical induction.

For \[n=1\] , we have

\[P\left( 1 \right)=\left[ \begin{matrix}   {{3}^{1-1}} & {{3}^{1-1}} & {{3}^{1-1}}  \\   {{3}^{1-1}} & {{3}^{1-1}} & {{3}^{1-1}}  \\   {{3}^{1-1}} & {{3}^{1-1}} & {{3}^{1-1}}  \\ \end{matrix} \right]\]

\[\Rightarrow P\left( 1 \right)=\left[ \begin{matrix}   {{3}^{0}} & {{3}^{0}} & {{3}^{0}}  \\   {{3}^{0}} & {{3}^{0}} & {{3}^{0}}  \\   {{3}^{0}} & {{3}^{0}} & {{3}^{0}}  \\ \end{matrix} \right]\]

\[\Rightarrow P\left( 1 \right)=\left[ \begin{matrix}   1 & 1 & 1  \\   1 & 1 & 1  \\   1 & 1 & 1  \\ \end{matrix} \right]\]

\[\Rightarrow P\left( 1 \right)=A\]

Therefore, the result is true for \[n=1\] .

Let the result be true for \[n=k\] .

\[P\left( k \right):{{A}^{k}}=\left[ \begin{matrix}   {{3}^{k-1}} & {{3}^{k-1}} & {{3}^{k-1}}  \\   {{3}^{k-1}} & {{3}^{k-1}} & {{3}^{k-1}}  \\   {{3}^{k-1}} & {{3}^{k-1}} & {{3}^{k-1}}  \\ \end{matrix} \right]\]

Now, we have to prove that the result is true for \[n=k+1\] .

Now, \[{{A}^{k+1}}=A\cdot {{A}^{k}}\]

\[\Rightarrow {{A}^{k+1}}=\left[ \begin{matrix}   1 & 1 & 1  \\   1 & 1 & 1  \\   1 & 1 & 1  \\ \end{matrix} \right]\left[ \begin{matrix}   {{3}^{k-1}} & {{3}^{k-1}} & {{3}^{k-1}}  \\   {{3}^{k-1}} & {{3}^{k-1}} & {{3}^{k-1}}  \\   {{3}^{k-1}} & {{3}^{k-1}} & {{3}^{k-1}}  \\ \end{matrix} \right]\]

\[\Rightarrow {{A}^{k+1}}=\left[ \begin{matrix}   3\cdot {{3}^{k-1}} & 3\cdot {{3}^{k-1}} & 3\cdot {{3}^{k-1}}  \\   3\cdot {{3}^{k-1}} & 3\cdot {{3}^{k-1}} & 3\cdot {{3}^{k-1}}  \\   3\cdot {{3}^{k-1}} & 3\cdot {{3}^{k-1}} & 3\cdot {{3}^{k-1}}  \\ \end{matrix} \right]\]

\[\Rightarrow {{A}^{k+1}}=\left[ \begin{matrix}   {{3}^{\left( k+1 \right)-1}} & {{3}^{\left( k+1 \right)-1}} & {{3}^{\left( k+1 \right)-1}}  \\   {{3}^{\left( k+1 \right)-1}} & {{3}^{\left( k+1 \right)-1}} & {{3}^{\left( k+1 \right)-1}}  \\   {{3}^{\left( k+1 \right)-1}} & {{3}^{\left( k+1 \right)-1}} & {{3}^{\left( k+1 \right)-1}}  \\ \end{matrix} \right]\]

Thus, the result is true for \[n=k+1\]

Therefore, by the principal of mathematical induction, we have:

 \[{{A}^{n}}=\left[ \begin{matrix}   {{3}^{n-1}} & {{3}^{n-1}} & {{3}^{n-1}}  \\  {{3}^{n-1}} & {{3}^{n-1}} & {{3}^{n-1}}  \\   {{3}^{n-1}} & {{3}^{n-1}} & {{3}^{n-1}}  \\ \end{matrix} \right]\] where \[A=\left[ \begin{matrix}   0 & 1  \\   0 & 0  \\ \end{matrix} \right]\] , \[n\in N\].


3. If \[A=\left[ \begin{matrix}   3 & -4  \\   1 & -1  \\ \end{matrix} \right]\] , then prove \[{{A}^{n}}=\left[ \begin{matrix}   1+2n & -4n  \\   n & 1-2n  \\ \end{matrix} \right]\] where \[n\] is any positive integer.

Ans: Given \[A=\left[ \begin{matrix}   3 & -4  \\   1 & -1  \\ \end{matrix} \right]\]

By using the principle of mathematical induction.

For \[n=1\] ,

\[P\left( 1 \right):A=\left[ \begin{matrix}   3 & -4  \\   1 & -1  \\ \end{matrix} \right]\]

Therefore, the result is true for \[n=1\] .

Let the result be true for \[n=k\] .

That is, \[P\left( k \right):{{A}^{k}}=\left[ \begin{matrix}   1+2k & -4k  \\   k & 1-2k  \\ \end{matrix} \right]\] , \[n\in N\]

Now, we have to prove that the result is true for \[n=k+1\] .

\[{{A}^{k+1}}=A\cdot {{A}^{k}}\]

\[\Rightarrow {{A}^{k+1}}=\left[ \begin{matrix}   1+2k & -4k  \\   k & 1-2k  \\ \end{matrix} \right]\left[ \begin{matrix}   3 & -4  \\   1 & -1  \\ \end{matrix} \right]\]

\[\Rightarrow {{A}^{k+1}}=\left[ \begin{matrix}   3+2k & -4-4k  \\  1+k & -1-2k  \\ \end{matrix} \right]\]

\[\Rightarrow {{A}^{k+1}}=\left[ \begin{matrix}   1+2\left( k+1 \right) & -4\left( k+1 \right)  \\   1+k & 1-2\left( k+1 \right)  \\ \end{matrix} \right]\]

Thus, the result is true for \[n=k+1\]

Therefore, by the principal of mathematical induction, we have:

\[{{A}^{n}}=\left[ \begin{matrix}   1+2n & -4n  \\   n & 1-2n  \\ \end{matrix} \right]\] , \[n\in N\].


4. Examine the consistency of the system of equations.

\[\mathbf{\text{5x-y+4z=5}}\]

\[\mathbf{\text{2x+3y+5z=2}}\]

\[\mathbf{\text{5x-2y+6z=-1}}\]

Ans: Given equations,

\[\text{5x-y+4z=5}\]

\[\text{2x+3y+5z=2}\]

\[\text{5x-2y+6z=-1}\]

Let \[\text{A=}\left[ \begin{matrix} \text{5} & \text{-1} & \text{4}  \\ \text{2} & \text{3} & \text{5}  \\ \text{3} & \text{-2} & \text{6}  \\ \end{matrix} \right]\] , \[\text{X=}\left[ \begin{matrix} \text{x}  \\ \text{y}  \\ \text{z}  \\ \end{matrix} \right]\] and \[\text{B=}\left[ \begin{matrix} \text{5}  \\ \text{2}  \\ \text{-1}  \\ \end{matrix} \right]\] such that, the system of equations can be written in the form of \[\text{AX=B}\].

Determining the value of $A$, we have:

\[\Rightarrow \left| \text{A} \right|\text{=5}\left( \text{18+10} \right)\text{+1}\left( \text{12-25} \right)\text{+4}\left( \text{-4-15} \right)\]

\[\Rightarrow \left| \text{A} \right|\text{=5}\left( \text{28} \right)\text{+1}\left( \text{-13} \right)\text{+4}\left( \text{-19} \right)\]

\[\Rightarrow \left| \text{A} \right|\text{=140-13-76}\]

\[\therefore \left| \text{A} \right|\text{=51}\ne \text{0}\]

Hence, \[\text{A}\] is a non-singular matrix.

Thus, \[{{\text{A}}^{\text{-1}}}\] exists.

$\therefore $ The given system of equations is consistent.


5. Show that the function defined by  $ \text{f(x)=cos(}{{\text{x}}^{\text{2}}}\text{)} $  is a continuous function.

Ans: The given function is  $ \text{f(x)=cos(}{{\text{x}}^{\text{2}}}\text{)} $ .

Note that,  $ \text{f} $  is defined for all real numbers and so  $ \text{f} $  can be expressed as the composition of two functions as,  $ \text{f=g}\circ \text{h} $ , where  $ \text{g(x)=cosx} $  and  $ \text{h(x)=}{{\text{x}}^{\text{2}}} $ .

$ \text{ }\!\![\!\!\text{ }\therefore \text{(goh)(x)=g(h(x))=g(}{{\text{x}}^{\text{2}}}\text{)=cos(}{{\text{x}}^{\text{2}}}\text{)=f(x) }\!\!]\!\!\text{ } $ 

Now, it is to be Proven that, the functions  $ \text{g(x)=cosx} $  and  $ \text{h(x)=}{{\text{x}}^{\text{2}}} $  are continuous.

Since the function  $ \text{g} $  is defined for all the real numbers, let 's consider  $ \text{c} $  be a real number.

Then,  $ \text{g(c)=cosc} $ .

Substitute  $ \text{x=c+h} $  into the function  $ \text{g} $ .

When,  $ \text{x}\to \text{c} $ , then  $ \text{h}\to 0 $ .

Then we have,

$ \begin{align} & \underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{g(x)=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{cosx} \\ & =\underset{\text{h}\to 0}{\mathop{\lim }}\,\text{cos}\left( \text{c+h} \right) \\ & =\underset{\text{h}\to 0}{\mathop{\lim }}\,\left[ \text{cosc}\cdot \text{cosh-sinc}\cdot \text{sinh} \right] \\ & =\underset{\text{h}\to 0}{\mathop{\lim }}\,\left( \text{cosc}\cdot \text{cosh} \right)-\underset{\text{h}\to 0}{\mathop{\lim }}\,\left( \text{sinc}\cdot \text{sinh} \right) \\ & \text{=cosc}\cdot \text{cos0}-\text{sinc}\cdot \text{sin0} \\ & \text{=cosc }\!\!\times\!\!\text{ 1}-\text{sinc }\!\!\times\!\!\text{ 0} \\ & \text{=cosc} \\ \end{align} $

Therefore,  $ \underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{g(x)=g(c)} $ .

Hence, the function  $ \text{g(x)=cosx} $  is continuous.

Again,  $ \text{h(x)=}{{\text{x}}^{\text{2}}} $  is defined for every real point.

So, let consider  $ \text{k} $  be a real number, then  $ \text{h(k)=}{{\text{k}}^{\text{2}}} $  and

 $ \underset{\text{x}\to \text{k}}{\mathop{\lim }}\,\text{h(x)=}\underset{\text{x}\to \text{k}}{\mathop{\lim }}\,{{\text{x}}^{\text{2}}}\text{=}{{\text{k}}^{\text{2}}} $ .

Therefore,  $ \underset{\text{x}\to \text{k}}{\mathop{\lim }}\,\text{h(x)=h(k)} $ .

Hence, the function  $ \text{h} $  is continuous.

Now, remember that for real valued functions  $ \text{g} $  and  $ \text{h} $  , such that  $ \text{(g }\circ \text{ h)} $  is defined at  $ \text{c} $  , if  $ \text{g} $  is continuous at  $ \text{c} $  and  $ \text{f} $  is continuous at  $ \text{g(c)} $ , then  $ \text{(f }\circ \text{ h)} $ is continuous at  $ \text{c} $ .

Hence, the function  $ \text{f(x)=(g }\circ \text{ h)(x)=cos(}{{\text{x}}^{2}}\text{)} $  is continuous.


6. Find the points at which the function $f$ given by $f(x) = {(x - 2)^4}{(x + 1)^3}$ has

(i) local maxima

(ii) local minima

(iii) point of inflexion

Ans: $f(x) = {(x - 2)^4}{(x + 1)^3}$

$\therefore {f^\prime }(x) = 4{(x - 2)^3}{(x + 1)^3} + 3{(x + 1)^2}{(x - 2)^4}$

$= {(x - 2)^3}{(x + 1)^2}[4(x + 1) + 3(x - 2)]$

$= {(x - 2)^3}{(x + 1)^2}(7x - 2)$

${f^\prime }(x) = 0 \Rightarrow x =  - 1$ and $x = \dfrac{2}{7}$ or $x = 2$

for $x$ close to $\dfrac{2}{7}$ and to left of $\dfrac{2}{7},{f^\prime }(x) > 0$.

for $x$ close to $\dfrac{2}{7}$ and to right of $\dfrac{2}{7},{f^\prime }(x) > 0$. $x = \dfrac{2}{7}$ is point of local minima.

as the value of $x$ varies ${f^\prime }(x)$ does not changes its sign.

$x =  - 1$ is point of inflexion.


7. Solve the following: $\dfrac{{{e}^{2x}}-{{e}^{-2x}}}{{{e}^{2x}}+{{e}^{-2x}}}$.

Ans: Given expression $\dfrac{{{e}^{2x}}-{{e}^{-2x}}}{{{e}^{2x}}+{{e}^{-2x}}}$.

Let us substitute ${{e}^{2x}}+{{e}^{-2x}}=t$, we get

$\left( 2{{e}^{2x}}+2{{e}^{-2x}} \right)dx=dt$

$\Rightarrow 2\left( {{e}^{2x}}-{{e}^{-2x}} \right)dx=dt$

Integration of given expression is

$\Rightarrow \int{\dfrac{{{e}^{2x}}-{{e}^{-2x}}}{{{e}^{2x}}+{{e}^{-2x}}}}=\int{\dfrac{dt}{2t}}$

$\Rightarrow \int{\dfrac{{{e}^{2x}}-{{e}^{-2x}}}{{{e}^{2x}}+{{e}^{-2x}}}}=\dfrac{1}{2}\int{\dfrac{1}{t}dt}$

$\Rightarrow \int{\dfrac{{{e}^{2x}}-{{e}^{-2x}}}{{{e}^{2x}}+{{e}^{-2x}}}}=\dfrac{1}{2}\log \left| t \right|+C$

Again substitute $t={{e}^{2x}}+{{e}^{-2x}}$, we get

$\therefore\int{\dfrac{{{e}^{2x}}-{{e}^{-2x}}}{{{e}^{2x}}+{{e}^{-2x}}}}=\dfrac{1}{2}\log \left| {{e}^{2x}}+{{e}^{-2x}} \right|+C$


8. Determine order and degree (if defined) of differential equation ${{\left( \frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}} \right)}^{\text{2}}}\text{+cos}\left( \frac{\text{dy}}{\text{dx}} \right)\text{=0}$.

Ans: The given differential equation is ${{\left( \frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}} \right)}^{\text{2}}}\text{+cos}\left( \frac{\text{dy}}{\text{dx}} \right)\text{=0}$.

The highest order term is $\frac{{{\text{d}}^{\text{2}}}y}{\text{d}{{\text{x}}^{\text{2}}}}$, thus the order is two.


The differential equation contains a trigonometric derivative term and is not completely polynomial in its derivative, thus degree is not defined.


9. Find the direction cosines of the line which makes equal angles with the coordinate axes.

Ans: Let us consider that the line makes an angle $\text{ }\!\!\alpha\!\!\text{ }$ with coordinate axes

Which means $\text{l=cos }\!\!\alpha\!\!\text{ ,m=cos }\!\!\alpha\!\!\text{ ,n=cos }\!\!\alpha\!\!\text{ }$

Now, we know that 

${{\text{l}}^{\text{2}}}\text{+}{{\text{m}}^{\text{2}}}\text{+}{{\text{n}}^{\text{2}}}\Rightarrow \text{co}{{\text{s}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +co}{{\text{s}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +co}{{\text{s}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ }$

$\Rightarrow \text{3co}{{\text{s}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ =1}$

$\Rightarrow \text{co}{{\text{s}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ =}\frac{\text{1}}{\text{3}}\Rightarrow \text{cos }\!\!\alpha\!\!\text{ = }\!\!\pm\!\!\text{ }\frac{\text{1}}{\sqrt{\text{3}}}$

Therefore, the direction cosines of the line are $\text{ }\!\!\pm\!\!\text{ }\frac{\text{1}}{\sqrt{\text{3}}}\text{, }\!\!\pm\!\!\text{ }\frac{\text{1}}{\sqrt{\text{3}}}\text{, }\!\!\pm\!\!\text{ }\frac{\text{1}}{\sqrt{\text{3}}}$.

 

10. A box of oranges is inspected by examining three randomly selected oranges drawn without replacement. If all the three oranges are good, the box is approved for sale, otherwise, it is rejected. Find the probability that a box containing $15$ oranges out of which $12$ are good and $3$ are bad ones will be approved for sale.

Ans: Let A,B and C be the events and their probabilities defined as 

A: the first orange is good

$\therefore P\left( A \right)=\frac{12}{15}$

B: the second orange is good

$\therefore P\left( B \right)=\frac{1}{15}$

C: the third orange is good

$\therefore P\left( C \right)=\frac{10}{15}$

It is given that the box is approved for sale only when all the oranges are good.

Probability that the box is approved for sale=probability of all oranges to be good

Therefore probability of all oranges to be good=$\frac{12}{15}\times \frac{11}{15}\times \frac{10}{15}$

Thus probability that the box is approved for sale=$\frac{44}{91}$


Here are 10 important questions from all chapters. For more detailed, chapter-wise questions, refer to the table above and download the PDF. This will help you gain a better understanding of each chapter and enhance your exam preparation.


How do Maths Important Questions Class 12 Help You with Exams?

  • Maths important questions help students focus on key topics that are likely to appear in exams. This targeted approach makes studying more effective.

  • Practising these questions reinforces understanding of essential concepts. It allows students to see how different topics connect and apply to real problems.

  • Regular practice with important questions boosts confidence. Students become more familiar with the exam format and types of questions they may encounter.

  • These questions help identify areas that need improvement. By recognising weak points, students can dedicate more time to those topics.

  • Working through important questions improves problem-solving skills. This practice helps students develop strategies for tackling various types of maths problems.

  • Using these questions for revision allows for quick and efficient study sessions. Students can review key concepts without getting overwhelmed by too much information.

  • Important questions prepare students for different question formats, including short answer and long answer types. This variety ensures students are ready for any exam situation.


Class 12 Maths Important Questions are a valuable resource for students preparing for their exams. They cover key concepts and topics, making it easier to study and understand the material. By practising these important questions, students can build their confidence, improve their problem-solving skills, and get familiar with the exam format. Using Vedantu's resources will help you stay organised and focused, ultimately leading to better results in your exams. Make sure to incorporate these questions into your study routine for effective preparation!


Additional Study Materials for Class 12 Maths 

FAQs on CBSE Class 12 Maths Important Questions

1. How are important questions for Class 12 Maths different from regular practice questions?

Important questions are picked based on what often appears in exams, making them more useful for your Class 12 Maths preparation.

2. Can I find important questions for each chapter in Class 12 Maths on Vedantu?

Yes, Vedantu provides important questions organised by chapter, so you can easily focus on specific topics you need to study.

3. What should I do if I find some important questions in Class 12 Maths difficult?

If you struggle with any questions, review the related topics, ask your teachers or friends for help, and practice more problems to improve.

4. How can I make the most of solving important questions in Class 12 Maths on Vedantu?

Try to answer the questions on your own first. Afterwards, check your answers and learn from any mistakes to understand better.

5. Are there online resources for Class 12 Maths important questions on Vedantu?

Vedantu has many resources with important questions, complete with explanations and solutions to help you learn.

6. When is the best time to start practising important questions for Class 12 Maths exams?

It's best to start practising early in the year, but focusing on these questions in the weeks before exams will also help a lot.

7. Do I need to memorise the important questions for Class 12 Maths?

Instead of just memorising, try to understand the concepts behind the questions. This way, you can apply what you’ve learned more effectively.

8. Are the formats of important questions in Class 12 Maths similar to actual exam questions?

The important questions on Vedantu are designed to look like real exam questions, so you’ll know what to expect.

9. Should I focus more on important questions or textbook exercises in Class 12 Maths?

Both are important! While the important questions help you prepare for exams, textbook exercises provide a deeper understanding of the concepts.

10. How can practising important questions help me manage my time during Class 12 Maths exams?

Practising these questions helps you learn to solve them quickly, which is essential for managing your time well during exams.