Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Inverse Trigonometric Functions Class 12 Notes: CBSE Maths Chapter 2

ffImage
banner

Maths Chapter 2 Inverse Trigonometric Functions Class 12 Notes Download FREE PDF

Inverse Trigonometric Functions Class 12 Notes explore the basics of inverse trigonometric functions, which are important in solving complex maths problems. These revision notes cover the definitions, properties, and key operations related to these functions. Class 12 Maths Revision Notes help students understand how inverse trigonometric functions work and how they are applied in different situations.


Following the CBSE Class 12 Maths Syllabus, the notes explain important topics like principal values, domains, ranges, and different uses of inverse trigonometric functions. The notes are designed to make difficult topics easier to understand and to help students prepare well for exams. By using Inverse Trigonometry Class 12 Notes, students can grasp important concepts and feel more confident in their math skills.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
More Free Study Material for Inverse Trigonometric Functions
icons
Ncert solutions
648.6k views 12k downloads
icons
Important questions
803.7k views 10k downloads
icons
Ncert books
815.1k views 13k downloads

Access Class 12 Maths Chapter 2 Inverse Trigonometric Functions - PDF Download

Domain and Range of all Inverse Trigonometric Functions

Function

Domain

Range

1. \[y={{\sin }^{-1}}x\text{ if }x=\sin y\]

\[-1\le x\le 1\]

\[\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\]

2. \[y={{\cos }^{-1}}x\text{if }x=\cos y\]

\[-1\le x\le 1\]

\[[0,\pi ]\]

3. \[y={{\tan }^{-1}}x\text{if }x=\tan y\]

\[-\infty  < x < \infty \]

\[\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)\]

4. \[y={{\cot }^{-1}}x\text{if }x=\cot y\]

\[-\infty  < x < \infty \]

\[(0,\pi )\]

5.\[y=\text{cose}{{\text{c}}^{-1}}x\text{if }x=\text{cosec}y\]

\[(-\infty ,-1]\cup [1,\infty )\]

\[\left[ -\dfrac{\pi }{2},0 \right)\cup \left( 0,\dfrac{\pi }{2} \right]\]

6. \[y={{\sec }^{-1}}x\text{if }x=\sec y\]

\[(-\infty ,-1]\cup [1,\infty )\]

\[\left[ 0,\dfrac{\pi }{2} \right)\cup \left( \dfrac{\pi }{2},\pi  \right]\]

  • We must note that inverse trigonometric functions cannot be expressed in terms of trigonometric functions as their reciprocals. For example, ${{\sin }^{-1}}x\ne \dfrac{1}{\sin x}$.

  • The principal value of a trigonometric function is that value which lies in the range of principal branch.

  • The functions \[{{\sin }^{-1}}x\text{  }\!\!\And\!\!\text{  }{{\tan }^{-1}}x\] are increasing functions in their domain.

  • The functions \[{{\cos }^{-1}}x\text{  }\!\!\And\!\!\text{  }{{\cot }^{-1}}x\] are decreasing functions in over domain.

 

Graphs of Inverse Trigonometric Functions

a) Graph of ${{\sin }^{-1}}x$ is shown below,


Graph of sin


b) Graph of ${{\cos }^{-1}}x$ is shown below,


Graph of cos


c) Graph of ${{\tan }^{-1}}x$ is shown below,


Graph of tan


d) Graph of $\cos e{{c}^{-1}}x$ is shown below,


Graph of cos e


e) Graph of ${{\sec }^{-1}}x$ is shown below,


Graph of sec


f) Graph of ${{\cot }^{-1}}x$ is shown below,


Graph of cot


Properties of Inverse Trigonometric Functions

1. Property I

(a). \[{{\sin }^{-1}}\left( \dfrac{1}{x} \right)=\cos e{{c}^{-1}}x\], for all \[x\in \left( -\infty ,1 \right]\cup \left[ 1,\infty  \right)\]

Let us prove this by considering \[\cos e{{c}^{-1}}x=\theta \] ……(i)

Taking \[\cos ec\] on both sides,

\[x=\cos ec\theta \]

Using reciprocal identity,

\[\Rightarrow \dfrac{1}{x}=\sin \theta \]

\[\left\{ \because x\in \left( -\infty ,-1 \right]\cup \left[ 1,\infty  \right) \right\}\Rightarrow \dfrac{1}{x}\in \left[ -1,1 \right]\left\{ 0 \right\}\]

\[\cos e{{c}^{-1}}x=\theta \Rightarrow \theta \in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]-\left\{ 0 \right\}\]

\[\Rightarrow \theta ={{\sin }^{-1}}\left( \dfrac{1}{x} \right)\] ……(ii)

From (i) and (ii), we get

\[{{\sin }^{-1}}\left( \dfrac{1}{x} \right)=\cos e{{c}^{-1}}x\]

Hence proved.

b). \[{{\cos }^{-1}}\left( \dfrac{1}{x} \right)={{\sec }^{-1}}x\], for all \[x\in \left( -\infty ,1 \right]\cup \left[ 1,\infty  \right)\]

Let us prove this by taking \[{{\sec }^{-1}}x=\theta \]   ……(i)

Taking \[\sec \] on both sides,

\[\Rightarrow x=\sec \theta \]

Using reciprocal identity,

\[\Rightarrow \dfrac{1}{x}=\cos \theta \]

\[\Rightarrow \theta ={{\cos }^{-1}}\left( \dfrac{1}{x} \right)\] ……(ii)

Then, \[x\in \left( -\infty ,1 \right]\cup \left[ 1,\infty  \right)\] and \[\theta \in \left[ 0,\pi  \right]-\left\{ \dfrac{\pi }{2} \right\}\]

\[\left\{ \begin{align} & \because x=\left( -\infty ,-1 \right]\cup \left[ 1,\infty  \right) \\ & \Rightarrow \dfrac{1}{x}\in \left[ -1,1 \right]-\left\{ 0 \right\}\text{ and }\theta \in \left[ 0,\pi  \right] \\ \end{align} \right.\]

From (i) and (ii), we get

\[{{\cos }^{-1}}\left( \dfrac{1}{x} \right)={{\sec }^{-1}}\left( x \right)\]

Hence proved.

c. \[{{\tan }^{-1}}\left( \dfrac{1}{x} \right)=\left\{ \begin{align} & {{\cot }^{-1}}x,\text{ for }x>0 \\ & -\pi +{{\cot }^{-1}}x,\text{ for }x < 0 \\ \end{align} \right.\] 

Let us prove this by taking \[{{\cot }^{-1}}x=\theta \]. Then \[x\in R,x\ne 0\] and \[\theta \in \left[ 0,\pi  \right]\]   ……(i)

Now there are two cases that arise:

Case I: When \[x>0\]

In this case, we have \[\theta \in \left( 0,\dfrac{\pi }{2} \right)\]

Considering \[{{\cot }^{-1}}x=\theta \] 

Taking \[\cot \] on both sides,

\[\Rightarrow x=\cot \theta \]

Using reciprocal property,                               

\[\Rightarrow \dfrac{1}{x}=\tan \theta \]

\[\theta ={{\tan }^{-1}}\left( \dfrac{1}{x} \right)\]  ……(ii)

From (i) and (ii), we get   \[\left\{ \because \theta \in \left( 0,\dfrac{\pi }{2} \right) \right\}\]

\[{{\tan }^{-1}}\left( \dfrac{1}{x} \right)={{\cot }^{-1}}x\], for all \[x>0\]

Case II: When \[x < 0\]

In this case, we have \[\theta \in \left( \dfrac{\pi }{2},\pi \right)\text{ }\left\{ \because x=\cot \theta < 0 \right\}\]

Now, \[\dfrac{\pi }{2} < \theta  < \pi \]

\[\Rightarrow -\dfrac{\pi }{2} < \theta -\pi  < 0\]

\[\Rightarrow \theta -\pi \in \left( -\dfrac{\pi }{2},0 \right)\]

\[\therefore {{\cot }^{-1}}x=\theta \]

Taking \[\cot \] on both sides,

\[\Rightarrow x=\cot \theta \]

Using reciprocal property,

\[\Rightarrow \dfrac{1}{x}=\tan \theta \]

\[\Rightarrow \dfrac{1}{x}=-\tan \left( \pi -\theta  \right)\]

\[\Rightarrow \dfrac{1}{x}=\tan \left( \theta -\pi \right)\text{ }\left\{ \because \tan \left( \pi -\theta \right)=-\tan \theta \right\}\]

\[\Rightarrow \theta -\pi ={{\tan }^{-1}}\left( \dfrac{1}{x} \right)\text{ }\left\{ \because \theta -\pi \in \left( -\dfrac{\pi }{2},0 \right) \right\}\]

\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{x} \right)=-\pi +\theta \]   ……(iii)

From (i) and (iii), we get

\[{{\tan }^{-1}}\left( \dfrac{1}{x} \right)=-\pi +{{\cot }^{-1}}x\], if \[x < 0\]

Hence it is proved that \[{{\tan }^{-1}}\left( \dfrac{1}{x} \right)=\left\{ \begin{align} & {{\cot }^{-1}}x,\text{ for }x>0 \\ & -\pi +{{\cot }^{-1}}x,\text{ for }x < 0 \\ \end{align} \right.\].

 

2. Property II

  1. \[{{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}\left( x \right)\], for all \[x\in \left[ -1,1 \right]\]

  2. \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}x\], for all \[x\in R\]

  3. \[\cos e{{c}^{-1}}\left( -x \right)=-\cos e{{c}^{-1}}x\], for all \[x\in \left( -\infty ,-1 \right]\cup \left[ 1,\infty  \right)\]

Clearly, \[-x\in \left[ -1,1 \right]\] for all \[x\in \left[ -1,1 \right]\]

Let us prove a) by taking \[{{\sin }^{-1}}\left( -x \right)=\theta \]

Then, taking $\sin $ on both sides, we get

\[-x=\sin \theta \]   ……(i)

\[\Rightarrow x=-\sin \theta \]

\[\Rightarrow x=\sin \left( -\theta  \right)\]

\[\Rightarrow -\theta ={{\sin }^{-1}}x\]

\[\left\{ \because x\in \left[ -1,1 \right]\text{ and }-\theta \in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\text{ for all }\theta \in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] \right\}\]

\[\Rightarrow \theta =-{{\sin }^{-1}}x\]  ……(ii)

From (i) and (ii), we get

\[{{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}\left( x \right)\]

Hence proved.

The b) and c) properties can also be proved in the similar manner.

3. Property III

  1. \[{{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}\left( x \right)\], for all \[x\in \left[ -1,1 \right]\]

  2. \[{{\sec }^{-1}}\left( -x \right)=\pi -{{\sec }^{-1}}x\], for all \[x\in \left( -\infty ,-1 \right]\cup \left[ 1,\infty  \right)\]

  3. \[{{\cot }^{-1}}\left( -x \right)=\pi -{{\cot }^{-1}}x\], for all \[x\in R\]

Clearly, \[-x\in \left[ -1,1 \right]\] for all \[x\in \left[ -1,1 \right]\]

Let us prove it by taking \[{{\cos }^{-1}}\left( -x \right)=\theta \]  ……(i)

Then, taking $\cos $ on both sides, we get

\[-x=\cos \theta \]

\[\Rightarrow x=-\cos \theta \]

\[\Rightarrow x=\cos \left( \pi -\theta  \right)\]

\[\left\{ \because x\in \left[ -1,1 \right]\text{ and }\pi -\theta \in \left[ 0,\pi  \right]\text{ for all }\theta \in \left[ 0,\pi  \right] \right\}\]

\[{{\cos }^{-1}}x=\pi -\theta \]

\[\Rightarrow \theta =\pi -{{\cos }^{-1}}x\] ……(ii)

From (i) and (ii), we get

\[{{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}\left( x \right)\]

Hence Proved.

The b) and c) properties can also be proved in the similar manner.

4.  Property IV

a) \[{{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}\], for all \[x\in \left[ -1,1 \right]\]

Let us prove it by taking \[{{\sin }^{-1}}x=\theta \]  ……(i)

Then, \[\theta \in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\text{ }\left[ \because x\in \left[ -1,1 \right] \right]\]

\[\Rightarrow -\dfrac{\pi }{2}\le \theta \le \dfrac{\pi }{2}\]

\[\Rightarrow -\dfrac{\pi }{2}\le -\theta \le \dfrac{\pi }{2}\]

\[\Rightarrow 0\le \dfrac{\pi }{2}-\theta \le \pi \]

\[\Rightarrow \dfrac{\pi }{2}-\theta \in \left[ 0,\pi  \right]\]

Now we consider \[{{\sin }^{-1}}x=\theta \]

Taking $\sin $ on both sides, we get

\[\Rightarrow x=\sin \theta \]

Changing functions, we get

\[\Rightarrow x=\cos \left( \dfrac{\pi }{2}-\theta  \right)\]

\[\Rightarrow {{\cos }^{-1}}x=\dfrac{\pi }{2}-\theta \]

\[\left\{ \because x\in \left[ -1,1 \right]\text{ and }\left( \dfrac{\pi }{2}-\theta  \right)\in \left[ 0,\pi  \right] \right\}\]                                                

\[\Rightarrow \theta +{{\cos }^{-1}}x=\dfrac{\pi }{2}\] ……(ii)

From (i) and (ii), we get

\[{{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}\]

Hence proved.

b) \[{{\tan }^{-1}}x+{{\cot }^{-1}}x=\dfrac{\pi }{2}\], for all \[x\in R\]

Let us prove it by taking \[{{\tan }^{-1}}x=\theta \] ……(i)

Then, \[\theta \in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)\text{ }\left\{ \because x\in R \right\}\]

\[\Rightarrow -\dfrac{\pi }{2} < \theta  < \dfrac{\pi }{2}\]

\[\Rightarrow -\dfrac{\pi }{2} < -\theta  < \dfrac{\pi }{2}\]

\[\Rightarrow 0 < \dfrac{\pi }{2}-\theta  < \pi \]

\[\Rightarrow \left( \dfrac{\pi }{2}-\theta  \right)\in \left( 0,\pi  \right)\]

Now consider \[{{\tan }^{-1}}x=\theta \]

Taking $\tan $ on both sides, we get

\[\Rightarrow x=\tan \theta \]

\[\Rightarrow x=\cot \left( \dfrac{\pi }{2}-\theta  \right)\]

\[\Rightarrow {{\cot }^{-1}}x=\dfrac{\pi }{2}-\theta \text{ }\left\{ \because \dfrac{\pi }{2}-\theta \in \left( 0,\pi \right) \right\}\]

\[\Rightarrow \theta +{{\cot }^{-1}}x=\dfrac{\pi }{2}\]   ……(ii)

From (i) and (ii), we get

\[{{\tan }^{-1}}x+{{\cot }^{-1}}x=\dfrac{\pi }{2}\]

c) \[{{\sec }^{-1}}x+\cos e{{c}^{-1}}x=\dfrac{\pi }{2}\], for all \[x\in \left( -\infty ,-1 \right]\cup \left[ 1,\infty  \right)\]

Let us prove it by taking \[{{\sec }^{-1}}x=\theta \]   ……(i)

Then, \[\theta \in \left[ 0,\pi \right]-\left\{ \dfrac{\pi }{2} \right\}\text{ }\left\{ \because x\in \left( -\infty ,-1 \right]\cup \left[ 1,\infty \right) \right\}\]

\[\Rightarrow 0\le \theta \le \pi ,\theta \ne \dfrac{\pi }{2}\]

\[\Rightarrow -\pi \le -\theta \le 0,\theta \ne \dfrac{\pi }{2}\]

\[\Rightarrow -\dfrac{\pi }{2}\le \dfrac{\pi }{2}-\theta \le \dfrac{\pi }{2},\dfrac{\pi }{2}-\theta \ne 0\]

\[\Rightarrow \left( \dfrac{\pi }{2}-\theta  \right)\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right],\dfrac{\pi }{2}-\theta \ne 0\]

Now considering \[{{\sec }^{-1}}x=\theta \]

Taking $\sec $ on both sides, we get

\[\Rightarrow x=\sec \theta \]

\[\Rightarrow x=\cos ec\left( \dfrac{\pi }{2}-\theta  \right)\]

\[\Rightarrow \cos e{{c}^{-1}}x=\dfrac{\pi }{2}-\theta \]

\[\left\{ \because \left( \dfrac{\pi }{2}-\theta  \right)\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right],\dfrac{\pi }{2}-\theta \ne 0 \right\}\]

\[\Rightarrow \theta +\cos e{{c}^{-1}}x=\dfrac{\pi }{2}\]   ….…(ii)

From (i) and (ii), we get

\[{{\sec }^{-1}}x+\cos e{{c}^{-1}}x=\dfrac{\pi }{2}\]

 

5. Property V

  1. \[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x+y}{1-xy},xy < 1\]

  2. \[{{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x-y}{1+xy},xy>-1\]

  3. \[{{\tan }^{-1}}x+{{\tan }^{-1}}y=\pi +{{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right),xy>1;x,y=0\]

Let us prove a) by taking ${{\tan }^{-1}}x=\theta $ and ${{\tan }^{-1}}y=\phi $.

Taking $\tan $ on both sides for both terms, we get $x=\tan \theta $ and $y=\tan \phi $.

Using formula for $\tan \left( A+B \right)=\dfrac{\tan A+tanB}{1-\tan A\tan B}$, we can write

$\tan \left( \theta +\phi  \right)=\dfrac{\tan \theta +tan\phi }{1-\tan \theta \tan \phi }$

Writing in terms of $x\text{ }and\text{ }y$,

$\tan \left( \theta +\phi  \right)=\dfrac{x+y}{1-xy}$

$\Rightarrow \theta +\phi ={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$

Therefore \[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x+y}{1-xy},xy < 1\].

Hence proved.

The properties b) and c) can be proved in similar manner by considering $y$ as $-y$ and $y$ as $x$ respectively in the above proof.

 

6.  Property VI

  1. \[2{{\tan }^{-1}}x={{\sin }^{-1}}\dfrac{2x}{1+{{x}^{2}}},\left| x \right|\le 1\]

  2. \[2{{\tan }^{-1}}x={{\cos }^{-1}}\dfrac{1-{{x}^{2}}}{1+{{x}^{2}}},x\ge 0\]

  3. \[2{{\tan }^{-1}}x={{\tan }^{-1}}\dfrac{2x}{1-{{x}^{2}}},-1 < x < 1\]

Let us prove a) by taking ${{\tan }^{-1}}x=y$.

Taking $\tan $ on both sides, we get

$x=\tan y$

We can write ${{\sin }^{-1}}\dfrac{2x}{1+{{x}^{2}}}$ as ${{\sin }^{-1}}\dfrac{2\tan y}{1+{{\tan }^{2}}y}$.

Using formula $\sin 2x=\dfrac{2\tan x}{1+{{\tan }^{2}}x}$, we get

${{\sin }^{-1}}\dfrac{2x}{1+{{x}^{2}}}={{\sin }^{-1}}\left( \sin 2y \right)$

Using ${{\sin }^{-1}}\left( \sin x \right)=x$, this can be written as

${{\sin }^{-1}}\dfrac{2x}{1+{{x}^{2}}}=2y$

$\Rightarrow {{\sin }^{-1}}\dfrac{2x}{1+{{x}^{2}}}=2{{\tan }^{-1}}x$

Hence proved.

The same process can be followed to prove properties b) and c) as well.

 

7.  Property VII

  1. \[\sin \left( {{\sin }^{-1}}x \right)=x\], for all \[x\in \left[ -1,1 \right]\]

  2. \[\cos \left( {{\cos }^{-1}}x \right)=x\], for all \[x\in \left[ -1,1 \right]\]

  3. \[\tan \left( {{\tan }^{-1}}x \right)=x\], for all \[x\in R\]

  4. \[\cos ec\left( \cos e{{c}^{-1}}x \right)=x\], for all \[x\in \left( -\infty ,-1 \right]\cup \left[ 1,\infty  \right)\]

  5. \[\sec \left( {{\sec }^{-1}}x \right)=x\], for all \[x\in \left( -\infty ,-1 \right]\cup \left[ 1,\infty  \right)\]

  6. \[\cot \left( {{\cot }^{-1}}x \right)=x\], for all \[x\in R\]


Let us prove a). We know that, if \[f:A\to B\] is a bijection, then \[{{f}^{-1}}:B\to A\] exists such that \[fo{{f}^{-1}}\left( y \right)=f\left( {{f}^{-1}}\left( y \right) \right)=y\] for all \[y\in B\].

Clearly, all these results are direct consequences of this property.

Aliter: Let \[\theta \in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\] and \[x\in \left[ -1,1 \right]\] such that \[\sin \theta =x\].

Taking $\sin $ on both sides, \[\theta ={{\sin }^{-1}}x\]

\[\therefore x=\sin \theta =\sin \left( {{\sin }^{-1}}x \right)\]

Hence, \[\sin \left( {{\sin }^{-1}}x \right)=x\] for all \[x\in \left[ -1,1 \right]\] and we proved it.

We can prove properties from b) to f) in a similar manner.

It should be noted that, \[{{\sin }^{-1}}\left( \sin \theta  \right)\ne \theta \], if \[\notin \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\].

Let us understand this better. The function \[y={{\sin }^{-1}}\left( \sin x \right)\] is periodic and has period \[2\pi \].

To draw this graph, we should draw the graph for one interval of length \[2\pi \] and repeat the entire values of x.

As we know,

\[{{\sin }^{-1}}\left( \sin x \right)=\left\{ \begin{align} & x;\text{ }-\dfrac{\pi }{2}\le x\le \dfrac{\pi }{2} \\ & \left( \pi -x \right);\text{ }-\dfrac{\pi }{2}\le \pi -x < \dfrac{\pi }{2}\left( \text{i}\text{.e}\text{.,}\dfrac{\pi }{2}\le x\le \dfrac{3\pi }{2} \right) \\ \end{align} \right.\]

\[\Rightarrow {{\sin }^{-1}}\left( \sin x \right)=\left\{ \begin{align} & x,\text{ }-\dfrac{\pi }{2}\le x\le \dfrac{\pi }{2} \\ & \pi -x,\text{ }\dfrac{\pi }{2}\le x\le \dfrac{3\pi }{2}, \\ \end{align} \right.\]

This is plotted as

This is plotted as


Thus, we can note that the graph for \[y={{\sin }^{-1}}\left( \sin x \right)\] is a straight line up and a straight line down with slopes \[1\] and \[-1\] respectively lying between \[\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\].

The below result for the definition of \[{{\sin }^{-1}}\left( \sin x \right)\] must be kept in mind. \[y={{\sin }^{-1}}\left( \sin x \right)=\left\{ \begin{align} & x+2\pi ;\text{ }-\dfrac{5\pi }{2}\le x\le -\dfrac{3\pi }{2} \\ & -\pi -x;\text{ }-\dfrac{3\pi }{2}\le x\le -\dfrac{\pi }{2} \\ & x;\text{ }-\dfrac{\pi }{2}\le x\le \dfrac{\pi }{2} \\ & \pi -x;\text{ }\dfrac{\pi }{2}\le x\le \dfrac{3\pi }{2} \\ & x-2\pi ;\text{ }\dfrac{3\pi }{2}\le x\le \dfrac{5\pi }{2}\text{ }...\text{and so on} \\ \end{align} \right.\]

Now we consider \[y={{\cos }^{-1}}\left( \cos x \right)\] which is periodic and has period \[2\pi \].

To draw this graph, we should draw the graph for one interval of length \[2\pi \] and repeat the entire values of \[x\] of length \[2\pi \]        

As we know,

\[{{\cos }^{-1}}\left( \cos x \right)=\left\{ \begin{align} & x;\text{ }0\le x\le \pi \\ & 2\pi -x;\text{ }0\le 2\pi -x\le \pi , \\ \end{align} \right.\] \[\Rightarrow {{\cos }^{-1}}\left( \cos x \right)=\left\{ \begin{align} & x;\text{ }0\le x\le \pi \\ & 2\pi -x;\text{ }\pi \le x\le 2\pi , \\ \end{align} \right.\]

Thus, it has been defined for \[0 < x < 2\pi \] that has length \[2\pi \].

So, its graph could be plotted as;

the curve


Thus, the curve \[y={{\cos }^{-1}}\left( \cos x \right)\] and we can not the results as \[{{\cos }^{-1}}\left( \cos x \right)=\left\{ \begin{align} & -x,\text{ if x}\in \left[ -\pi ,0 \right] \\ & x,\text{ if x}\in \left[ 0,\pi \right] \\ & 2\pi -x,\text{ if x}\in \left[ \pi ,2\pi \right] \\ & -2\pi +x,\text{ if x}\in \left[ 2\pi ,3\pi \right]\text{ and so on}\text{.} \\ \end{align} \right.\]

Next, we consider \[y={{\tan }^{-1}}\left( \tan x \right)\] which is periodic and has period \[\pi \].

To draw this graph, we should draw the graph for one interval of length \[\pi \] and repeat the entire values of x.

We know \[{{\tan }^{-1}}\left( \tan x \right)=\left\{ x;-\dfrac{\pi }{2} < x < \dfrac{\pi }{2} \right\}\]. Thus, it has been defined for \[-\dfrac{\pi }{2} < x < \dfrac{\pi }{2}\] that has length \[\pi \].

The graph is plotted as

the curve for


Thus, the curve for \[y={{\tan }^{-1}}\left( \tan x \right)\], where \[y\] is not defined for \[x\in \left( 2n+1 \right)\dfrac{\pi }{2}\]. The below result can be kept in mind.

\[{{\tan }^{-1}}\left( \tan x \right)=\left\{ \begin{align} & -\pi -x,\text{ if x}\in \left[ -\dfrac{3\pi }{2},-\dfrac{\pi }{2} \right] \\ & x,\text{ if x}\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] \\ & x-\pi ,\text{ if x}\in \left[ \dfrac{\pi }{2},\dfrac{3\pi }{2} \right] \\ & x-2\pi ,\text{ if x}\in \left[ \dfrac{3\pi }{2},\dfrac{5\pi }{2} \right]\text{ and so on}\text{.} \\ \end{align} \right.\]

Additional Formulas

  1. \[{{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}\left( x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}} \right)\]

  2. \[{{\sin }^{-1}}x-{{\sin }^{-1}}y={{\sin }^{-1}}\left( x\sqrt{1-{{y}^{2}}}-y\sqrt{1-{{x}^{2}}} \right)\]

  3. \[{{\cos }^{-1}}x+{{\cos }^{-1}}y={{\cos }^{-1}}\left( xy-\sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}} \right)\]

  4. \[{{\cos }^{-1}}x-{{\cos }^{-1}}y={{\cos }^{-1}}\left( xy+\sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}} \right)\]

  5. \[{{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z={{\tan }^{-1}}\left[ \dfrac{x+y+z-xyz}{1-xy-yz-zx} \right]\], if \[x>0,y>0,z>0\And xy+yz+zx < 1\]

  6. \[{{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z=\pi \] when \[x+y+z=xyz\]

  7. \[{{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z=\dfrac{\pi }{2}\] when \[xy+yz+zx=1\]

  8. \[{{\sin }^{-1}}x+{{\sin }^{-1}}y+{{\sin }^{-1}}z=\dfrac{3\pi }{2}\text{; }x=y=z=1\]

  9. \[{{\cos }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}z=3\pi ;\text{ }x=y=z=-1\]

  10. \[{{\tan }^{-1}}1+{{\tan }^{-1}}2+2{{\tan }^{-1}}3={{\tan }^{-1}}1+{{\tan }^{-1}}\dfrac{1}{2}+{{\tan }^{-1}}\dfrac{1}{3}=\dfrac{\pi }{2}\]


5 Important Formulas for Maths Class 12 Chapter 2 You Shouldn’t Miss!

S.No.

Important Formulas

1.

sin−1(x) Formula: $\sin(\theta) = x \text{ and } -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$

2.

cos−1(x) Formula: $\cos^{-1}(x) = \theta \text{ where } \cos(\theta) = x \text{ and } 0 \leq \theta \leq \pi$

3.

tan⁡−1(x)\tan^{-1}(x)tan−1(x) Formula: $\tan^{-1}(x) = \theta \text{ where } \tan(\theta) = x \text{ and } -\frac{\pi}{2} < \theta < \frac{\pi}{2}$

4.

Addition Formula for sin⁡−1\sin^{-1}sin−1: $\sin^{-1}(x) + \sin^{-1}(y) = \sin^{-1}\left(x\sqrt{1 - y^2} + y\sqrt{1 - x^2}\right) \text{ if } |x|, |y| \leq 1$

5.

Addition Formula for cos⁡−1\cos^{-1}cos−1: $\cos^{-1}(x) + \cos^{-1}(y) = \pi - \cos^{-1}\left(xy - \sqrt{(1 - x^2)(1 - y^2)}\right) \text{ if } |x|, |y| \leq 1$



Importance of Maths Chapter 2 Notes Inverse Trigonometric Functions Class 12

  • These notes simplify the understanding of inverse trigonometric functions, which are essential for solving complex maths problems.

  • They help students grasp the concept of principal value branches, which is important for accurate calculations.

  • The notes clarify the domain and range of inverse trigonometric functions, which is important for solving equations.

  • They enhance problem-solving skills by providing clear explanations and examples of how these functions are used in various mathematical contexts.

  • Inverse Trigonometric Functions Class 12 Notes PDF aligns with the CBSE Class 12 Maths syllabus, helping students prepare effectively and confidently for board exams.


Tips for Learning the Class 12 Science Chapter 2 Inverse Trigonometric Functions

  • Start by thoroughly understanding the basic concepts of trigonometric functions, as this foundation is crucial for grasping inverse trigonometric functions.

  • Focus on principal value branches, as they can be challenging; practice identifying them for different functions.

  • Ensure you understand the domain and range of each inverse trigonometric function by practising related problems.

  • Study the graphs of inverse trigonometric functions to grasp their behaviour and range.

  • Practice solving various problems involving inverse trigonometric functions to solidify your understanding and prepare for exams.


Conclusion

The Revision Notes for Class 12 Maths Chapter on Inverse Trigonometric Functions simplify complex ideas, making them easier to grasp. They clearly explain key concepts such as principal value branches, domain, range, and the properties of inverse trigonometric functions. Inverse Trigonometric Functions Class 12 Notes PDF include helpful summaries and practice problems to reinforce learning. This chapter demonstrates how inverse trigonometric functions work and how to solve related problems. Regularly reviewing these notes will help students master the topic and perform better in their Class 12 Maths exams.


Related Study Materials for Class 12 Maths Chapter 2 Inverse Trigonometric Functions



Chapter-wise Revision Notes Links for Class 12 Maths



Important Study Materials for Class 12 Maths

WhatsApp Banner
Best Seller - Grade 12 - JEE
View More>
Previous
Next

FAQs on Inverse Trigonometric Functions Class 12 Notes: CBSE Maths Chapter 2

1. How do revision notes for Inverse Trigonometric Functions Class 12 help students master key concepts quickly?

Revision notes provide succinct summaries of definitions, properties, and formulas related to inverse trigonometric functions. By organising the material into clear sections—such as domains, ranges, principal values, and graphs—these notes make it easier for students to review major concepts and reinforce understanding in less time, supporting effective last-minute revision aligned with CBSE 2025–26 requirements.

2. What is the recommended sequence for revising the chapter on Inverse Trigonometric Functions in Class 12 Maths?

Begin with the basics of trigonometric functions and their domains and ranges. Next, study the definition of inverse trigonometric functions and focus on the principal value branches. Move on to learn key properties, standard formulas, and related graphs. End by practising property-based and mixed-concept questions to consolidate understanding before the exam.

3. Why is understanding the principal value branch crucial in inverse trigonometric functions?

The principal value branch ensures that every inverse trigonometric function yields a single, well-defined output for a given input. This prevents ambiguity in answers by restricting possible solutions to a standardised interval, which is essential for scoring accuracy in CBSE board exams and for solving equations without error.

4. How do the properties of inverse trigonometric functions simplify complex problems during revision?

Properties such as odd/even behaviour, addition and subtraction formulas, and identities like sin–1(x) + cos–1(x) = π/2 allow students to convert complicated expressions into simpler forms. Using these properties can greatly reduce calculation steps and help tackle mixed-concept problems quickly, making revision more efficient and effective.

5. What are the standard domains and ranges students should memorise for each inverse trigonometric function?

  • sin–1x: domain [–1, 1], range [–π/2, π/2]
  • cos–1x: domain [–1, 1], range [0, π]
  • tan–1x: domain (–∞, ∞), range (–π/2, π/2)
  • cot–1x: domain (–∞, ∞), range (0, π)
  • sec–1x: domain (–∞, –1] ∪ [1, ∞), range [0, π] (except π/2)
  • cosec–1x: domain (–∞, –1] ∪ [1, ∞), range [–π/2, π/2] (except 0)
Memorising these pairs is fundamental for accurate revision and application in exams.

6. How do graphs of inverse trigonometric functions support better understanding during quick revision?

Graphs visually display the domain, range, monotonicity, and key turning points of each inverse function. By studying these, students can quickly identify where each function is increasing or decreasing, spot principal branches, and verify answers graphically—facilitating faster and more reliable solutions during exams.

7. What common pitfalls should students avoid when revising inverse trigonometric functions for CBSE exams?

Students often confuse domains and ranges, apply incorrect principal value intervals, or misuse addition/subtraction formulas. Avoid these mistakes by paying special attention to property lists in revision notes, double-checking ranges for each function, and practising worked examples provided in the notes to reinforce correct application.

8. How are the properties of inverse trigonometric functions interconnected with other chapters in Class 12 Maths?

Inverse trigonometric properties frequently appear in calculus chapters (integration and differentiation) and in solving equations involving multiple mathematical concepts. Strong grasp of these properties enables students to transition seamlessly between chapters and apply inverse trigonometric identities in broader mathematical contexts, enhancing problem-solving skills overall.

9. What revision techniques are most effective for memorising formulas and properties from the chapter?

  • Create summary sheets featuring all major formulas and properties
  • Practice derivations of key properties (e.g., even/odd function behaviours)
  • Solve varied examples based on each property
  • Group similar identities to spot patterns
  • Review summary charts before tests for quick recall
Using these techniques strengthens concept retention and boosts revision speed.

10. How do revision notes ensure full alignment with the latest CBSE 2025–26 Maths syllabus for Inverse Trigonometric Functions?

Revision notes follow the official CBSE topic order, covering compulsory properties, proofs, standard graphs, and applications stated in the syllabus. They emphasise recent exam trends, include higher-order problem types, and clearly mark sections based on areas the board highlights as important—ensuring students revise exactly what is required for exam success.

11. Why is the understanding of odd and even properties of inverse trigonometric functions essential during revision?

Recognising which inverse functions are odd or even helps in simplifying expressions such as sin–1(–x) = –sin–1(x) and tan–1(–x) = –tan–1x. This knowledge allows for quick identification of answer signs and reduces errors in competitive and board exams.

12. How can understanding the proofs and logical steps behind properties help beyond rote memorisation?

Grasping the logical reasoning behind each property gives deeper insight into why a property holds, supporting flexibility when tackling unfamiliar problems. It also boosts confidence in derivations, minimises mistakes due to rote errors, and prepares students for higher-order CBSE 2025–26 exam questions that test application instead of memorisation alone.

13. What role do summary charts and revision maps play in quick last-minute preparation for Inverse Trigonometric Functions?

Summary charts and revision maps bring together all formulas, domains, ranges, and key properties in one place for fast reference. This accelerates revision by minimising page-flipping and helps ensure no important concept is left out when preparing for the CBSE Class 12 Maths exam’s Inverse Trigonometric Functions chapter.

14. How can mastering inverse trigonometric function properties help in solving integrals and equations in calculus?

A solid command of inverse trigonometric identities allows students to transform complex integrals or equations into standard forms that are easier to integrate or solve. These properties often provide the necessary substitutions and simplifications for efficient calculation in calculus problems across the Class 12 syllabus.

15. What makes a revision note ‘effective’ for the Inverse Trigonometric Functions chapter in board exam prep?

An effective revision note is concise, clearly highlights key formulas and proofs, organises properties by function, offers illustrative graphs, and uses solved examples to connect concepts. It aligns fully with the latest CBSE 2025–26 syllabus and is designed for step-wise revision, making even the most challenging concepts accessible for board-level mastery.