Answer
Verified
459.6k+ views
Hint: The work done in stretching a spring is equal to the change in its potential energy. The force applied on the spring is proportional to the amount of stretch produced in the spring. Determine the relationship between the displacement for two springs when the force applied is the same in case (b).
Formula Used:
$W=\dfrac{1}{2}K{{x}^{2}}$
$F=Kx$
Complete answer:
When a force is applied on a spring with spring constant $K$, it changes the potential energy of the spring and the work done is determined as the change in potential energy of the spring. The work done can be mathematically written as,
$W=\dfrac{1}{2}K{{x}^{2}}$
Here, $W$ is the work done, $K$ is the spring constant and \[x\] is the amount of stretch.
Now, for case(a), it is mentioned that both the springs are stretched by the same amount. Thus, the work done for both the springs can be written as,
${{W}_{P}}=\dfrac{1}{2}{{K}_{P}}{{x}^{2}};{{W}_{Q}}=\dfrac{1}{2}{{K}_{Q}}{{x}^{2}}$
Now, the question mentions that ${{K}_{P}} > {{K}_{Q}}$. Thus, from the above equation, ${{W}_{P}} > {{W}_{Q}}$.
Now, let us consider case (b). In this case, both the springs are stretched by the same force. Now, the force applied on a spring can be written as,
$F=Kx$
Given,
$\begin{align}
& {{F}_{P}}={{F}_{Q}} \\
& {{K}_{P}}{{x}_{P}}={{K}_{Q}}{{x}_{Q}}
\end{align}$
From the above equation, ${{x}_{P}} < {{x}_{Q}}$ since ${{K}_{P}} > {{K}_{Q}}$.
The work done on both springs can be written as,
${{W}_{P}}=\dfrac{1}{2}\left( {{K}_{P}}{{x}_{P}} \right){{x}_{P}}$ and ${{W}_{Q}}=\dfrac{1}{2}\left( {{K}_{Q}}{{x}_{Q}} \right){{x}_{Q}}$.
Now,
$\begin{align}
& \dfrac{{{W}_{P}}}{{{W}_{Q}}}=\dfrac{\dfrac{1}{2}\left( {{K}_{P}}{{x}_{P}} \right){{x}_{P}}}{\dfrac{1}{2}\left( {{K}_{Q}}{{x}_{Q}} \right){{x}_{Q}}} \\
& =\dfrac{{{x}_{P}}}{{{x}_{Q}}}
\end{align}$
Since we calculated ${{x}_{P}} < {{x}_{Q}}$, ${{W}_{P}} < {{W}_{Q}}$.
Thus, the correct option is (A).
Note:
The work done on both springs is determined as change in potential energy. Take care of the relationship between the spring constant of two springs before deducing further relationships. Determine work done in terms of force applied so as to reach to a conclusion in part (b).
Formula Used:
$W=\dfrac{1}{2}K{{x}^{2}}$
$F=Kx$
Complete answer:
When a force is applied on a spring with spring constant $K$, it changes the potential energy of the spring and the work done is determined as the change in potential energy of the spring. The work done can be mathematically written as,
$W=\dfrac{1}{2}K{{x}^{2}}$
Here, $W$ is the work done, $K$ is the spring constant and \[x\] is the amount of stretch.
Now, for case(a), it is mentioned that both the springs are stretched by the same amount. Thus, the work done for both the springs can be written as,
${{W}_{P}}=\dfrac{1}{2}{{K}_{P}}{{x}^{2}};{{W}_{Q}}=\dfrac{1}{2}{{K}_{Q}}{{x}^{2}}$
Now, the question mentions that ${{K}_{P}} > {{K}_{Q}}$. Thus, from the above equation, ${{W}_{P}} > {{W}_{Q}}$.
Now, let us consider case (b). In this case, both the springs are stretched by the same force. Now, the force applied on a spring can be written as,
$F=Kx$
Given,
$\begin{align}
& {{F}_{P}}={{F}_{Q}} \\
& {{K}_{P}}{{x}_{P}}={{K}_{Q}}{{x}_{Q}}
\end{align}$
From the above equation, ${{x}_{P}} < {{x}_{Q}}$ since ${{K}_{P}} > {{K}_{Q}}$.
The work done on both springs can be written as,
${{W}_{P}}=\dfrac{1}{2}\left( {{K}_{P}}{{x}_{P}} \right){{x}_{P}}$ and ${{W}_{Q}}=\dfrac{1}{2}\left( {{K}_{Q}}{{x}_{Q}} \right){{x}_{Q}}$.
Now,
$\begin{align}
& \dfrac{{{W}_{P}}}{{{W}_{Q}}}=\dfrac{\dfrac{1}{2}\left( {{K}_{P}}{{x}_{P}} \right){{x}_{P}}}{\dfrac{1}{2}\left( {{K}_{Q}}{{x}_{Q}} \right){{x}_{Q}}} \\
& =\dfrac{{{x}_{P}}}{{{x}_{Q}}}
\end{align}$
Since we calculated ${{x}_{P}} < {{x}_{Q}}$, ${{W}_{P}} < {{W}_{Q}}$.
Thus, the correct option is (A).
Note:
The work done on both springs is determined as change in potential energy. Take care of the relationship between the spring constant of two springs before deducing further relationships. Determine work done in terms of force applied so as to reach to a conclusion in part (b).
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
10 examples of friction in our daily life
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
State the laws of reflection of light