
The wave velocity of a progressive wave is \[480m{s^{ - 1}}\]and the phase difference between the two particles separated by a distance of 12m is \[{1080^0}\]. The number of waves passing across a point in 1 sec is
A. 120
B. 240
C. 60
D. 360
Answer
128.1k+ views
Hint:To solve this question you have to use the relation between the phase difference and path difference. The phase difference is defined as the difference in the phase angle of the two waves and the Path difference is defined as the difference in the path travelled by the two waves. Hence there is a direct relation between phase difference and path difference is. Both are directly proportional to each other.
Formula used:
In any two waves with the same frequency, the relation between Phase Difference and Path Difference is given as -
\[\Delta \phi = \dfrac{{2\pi }}{\lambda }\Delta x\]
Where \[\Delta x\] is the path difference between the two waves and \[\Delta \phi \] is the phase difference between the two waves.
Complete step by step solution:
Given: Phase difference, \[\Delta \phi = \dfrac{{1080}}{{180}}\pi = 6\pi \]
Wave velocity, \[v = 480\,m{s^{ - 1}}\]
Separation distance, \[\Delta x = 12\,m\]
As we know that
\[\Delta \phi = \dfrac{{2\pi }}{\lambda }\Delta x\]
\[\Rightarrow \lambda = \dfrac{{2\pi }}{{\Delta \phi }}\Delta x\]
Substituting the values, we have
\[\lambda = \dfrac{{2\pi }}{{6\pi }} \times 12\]
\[\Rightarrow \lambda = 4m\]
Now the number of waves passing can be,
\[n = \dfrac{v}{\lambda }\]
On substituting the values,
\[n = \dfrac{{480}}{4}\]
\[\therefore n = 120\]
Therefore, the number of waves passing across a point in 1 sec is 120.
Hence option A is the correct answer.
Note: There is a direct relation between Phase Difference and Path as they are directly proportional to each other. Phase difference is the difference between phase angles between two waves. On the other hand, Path difference refers to the difference in the path travelled by the two waves.
Formula used:
In any two waves with the same frequency, the relation between Phase Difference and Path Difference is given as -
\[\Delta \phi = \dfrac{{2\pi }}{\lambda }\Delta x\]
Where \[\Delta x\] is the path difference between the two waves and \[\Delta \phi \] is the phase difference between the two waves.
Complete step by step solution:
Given: Phase difference, \[\Delta \phi = \dfrac{{1080}}{{180}}\pi = 6\pi \]
Wave velocity, \[v = 480\,m{s^{ - 1}}\]
Separation distance, \[\Delta x = 12\,m\]
As we know that
\[\Delta \phi = \dfrac{{2\pi }}{\lambda }\Delta x\]
\[\Rightarrow \lambda = \dfrac{{2\pi }}{{\Delta \phi }}\Delta x\]
Substituting the values, we have
\[\lambda = \dfrac{{2\pi }}{{6\pi }} \times 12\]
\[\Rightarrow \lambda = 4m\]
Now the number of waves passing can be,
\[n = \dfrac{v}{\lambda }\]
On substituting the values,
\[n = \dfrac{{480}}{4}\]
\[\therefore n = 120\]
Therefore, the number of waves passing across a point in 1 sec is 120.
Hence option A is the correct answer.
Note: There is a direct relation between Phase Difference and Path as they are directly proportional to each other. Phase difference is the difference between phase angles between two waves. On the other hand, Path difference refers to the difference in the path travelled by the two waves.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
