
The wave velocity of a progressive wave is \[480m{s^{ - 1}}\]and the phase difference between the two particles separated by a distance of 12m is \[{1080^0}\]. The number of waves passing across a point in 1 sec is
A. 120
B. 240
C. 60
D. 360
Answer
147.9k+ views
Hint:To solve this question you have to use the relation between the phase difference and path difference. The phase difference is defined as the difference in the phase angle of the two waves and the Path difference is defined as the difference in the path travelled by the two waves. Hence there is a direct relation between phase difference and path difference is. Both are directly proportional to each other.
Formula used:
In any two waves with the same frequency, the relation between Phase Difference and Path Difference is given as -
\[\Delta \phi = \dfrac{{2\pi }}{\lambda }\Delta x\]
Where \[\Delta x\] is the path difference between the two waves and \[\Delta \phi \] is the phase difference between the two waves.
Complete step by step solution:
Given: Phase difference, \[\Delta \phi = \dfrac{{1080}}{{180}}\pi = 6\pi \]
Wave velocity, \[v = 480\,m{s^{ - 1}}\]
Separation distance, \[\Delta x = 12\,m\]
As we know that
\[\Delta \phi = \dfrac{{2\pi }}{\lambda }\Delta x\]
\[\Rightarrow \lambda = \dfrac{{2\pi }}{{\Delta \phi }}\Delta x\]
Substituting the values, we have
\[\lambda = \dfrac{{2\pi }}{{6\pi }} \times 12\]
\[\Rightarrow \lambda = 4m\]
Now the number of waves passing can be,
\[n = \dfrac{v}{\lambda }\]
On substituting the values,
\[n = \dfrac{{480}}{4}\]
\[\therefore n = 120\]
Therefore, the number of waves passing across a point in 1 sec is 120.
Hence option A is the correct answer.
Note: There is a direct relation between Phase Difference and Path as they are directly proportional to each other. Phase difference is the difference between phase angles between two waves. On the other hand, Path difference refers to the difference in the path travelled by the two waves.
Formula used:
In any two waves with the same frequency, the relation between Phase Difference and Path Difference is given as -
\[\Delta \phi = \dfrac{{2\pi }}{\lambda }\Delta x\]
Where \[\Delta x\] is the path difference between the two waves and \[\Delta \phi \] is the phase difference between the two waves.
Complete step by step solution:
Given: Phase difference, \[\Delta \phi = \dfrac{{1080}}{{180}}\pi = 6\pi \]
Wave velocity, \[v = 480\,m{s^{ - 1}}\]
Separation distance, \[\Delta x = 12\,m\]
As we know that
\[\Delta \phi = \dfrac{{2\pi }}{\lambda }\Delta x\]
\[\Rightarrow \lambda = \dfrac{{2\pi }}{{\Delta \phi }}\Delta x\]
Substituting the values, we have
\[\lambda = \dfrac{{2\pi }}{{6\pi }} \times 12\]
\[\Rightarrow \lambda = 4m\]
Now the number of waves passing can be,
\[n = \dfrac{v}{\lambda }\]
On substituting the values,
\[n = \dfrac{{480}}{4}\]
\[\therefore n = 120\]
Therefore, the number of waves passing across a point in 1 sec is 120.
Hence option A is the correct answer.
Note: There is a direct relation between Phase Difference and Path as they are directly proportional to each other. Phase difference is the difference between phase angles between two waves. On the other hand, Path difference refers to the difference in the path travelled by the two waves.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
