
The value of Boltzmann constant is: (In erg $K^{-1}$ molecul$e^{-1}$)
A. $1.38 \times \mathop {10}\nolimits^{ - 16}$
B. $1.38 \times \mathop {10}\nolimits^{ - 23}$
C. $8.314 \times \mathop {10}\nolimits^7$
D. $6.023 \times \mathop {10}\nolimits^{ - 16}$
Answer
165k+ views
Hint: It is a proportionality factor that relates average kinetic energy of particles in gas with thermodynamic temperature of gas.
Complete step by step solution:
It is known that Boltzmann constant ($k_b$), is a physical constant relating the average kinetic energy of particles in a gas with the temperature of the gas.
It is sort of a conversion type.
For simple ideal gases whose molecules are of mass m and have only kinetic energy, the Boltzmann constant k relates the average kinetic energy per molecule to the absolute temperature. The relationship can be given by: $\dfrac{{m{v^2}}}{2} = \dfrac{3}{2}kT$ where ${v^2}$ is the average of the squared velocity of gas molecules and $T$is the absolute temperature(in kelvin).
Also, it is the gas constant R divided by the Avogadro number NA : ${K_b} = \dfrac{R}{{{N_A}}}$.
Now we can calculate the value of Kb by using the formula: ${K_b} = \dfrac{R}{{{N_A}}}$
Calculation:
We know value of gas constant, $R = 8.3144J/K/mol$
Also, value of Avogadro number, ${N_A} = 6.02214 \times {10^{23}}$
Therefore, Boltzmann constant, ${K_b} = \dfrac{R}{{{N_A}}} = \dfrac{{8.3144}}{{6.02214 \times {{10}^{23}}}} = 1.3806 \times {10^{ - 23}}$ J/K/molecule
Now to convert the above calculated value of $K_b$ from J/K/molecule to erg $K^{-1}$ molecul$e^{-1}$, we have to multiply the above calculated value by 107:
${k_b} = \left( {1.3806 \times {{10}^{ - 23}}} \right)\left( {{{10}^7}} \right) = 1.3806 \times {10^{ - 16}}$ erg $K^{-1}$ molecul$e^{-1}$.
Hence, from above points we can now easily conclude that option A is the correct option.
Note: It should be remembered that Boltzmann constant is measured by measuring atomic speed of gas or speed of sound of gas. Also, one should remember the dimensional formula for Boltzmann’s constant which is ${M^2}{L^2}{T^{ - 2}}{\theta ^{ - 1}}$.
Complete step by step solution:
It is known that Boltzmann constant ($k_b$), is a physical constant relating the average kinetic energy of particles in a gas with the temperature of the gas.
It is sort of a conversion type.
For simple ideal gases whose molecules are of mass m and have only kinetic energy, the Boltzmann constant k relates the average kinetic energy per molecule to the absolute temperature. The relationship can be given by: $\dfrac{{m{v^2}}}{2} = \dfrac{3}{2}kT$ where ${v^2}$ is the average of the squared velocity of gas molecules and $T$is the absolute temperature(in kelvin).
Also, it is the gas constant R divided by the Avogadro number NA : ${K_b} = \dfrac{R}{{{N_A}}}$.
Now we can calculate the value of Kb by using the formula: ${K_b} = \dfrac{R}{{{N_A}}}$
Calculation:
We know value of gas constant, $R = 8.3144J/K/mol$
Also, value of Avogadro number, ${N_A} = 6.02214 \times {10^{23}}$
Therefore, Boltzmann constant, ${K_b} = \dfrac{R}{{{N_A}}} = \dfrac{{8.3144}}{{6.02214 \times {{10}^{23}}}} = 1.3806 \times {10^{ - 23}}$ J/K/molecule
Now to convert the above calculated value of $K_b$ from J/K/molecule to erg $K^{-1}$ molecul$e^{-1}$, we have to multiply the above calculated value by 107:
${k_b} = \left( {1.3806 \times {{10}^{ - 23}}} \right)\left( {{{10}^7}} \right) = 1.3806 \times {10^{ - 16}}$ erg $K^{-1}$ molecul$e^{-1}$.
Hence, from above points we can now easily conclude that option A is the correct option.
Note: It should be remembered that Boltzmann constant is measured by measuring atomic speed of gas or speed of sound of gas. Also, one should remember the dimensional formula for Boltzmann’s constant which is ${M^2}{L^2}{T^{ - 2}}{\theta ^{ - 1}}$.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Hess Law of Constant Heat Summation: Definition, Formula & Applications

Disproportionation Reaction: Definition, Example & JEE Guide

Environmental Chemistry Chapter for JEE Main Chemistry

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Types of Solutions

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE
