
The S.I. unit of electron mobility is
A. ${m^2}{s^2}{V^{ - 1}}$
B. ${m^2}{s^2}{V^{ - 1}}$
C. $m{s^{ - 1}}V$
D. ${m^2}{s^{ - 2}}V$
Answer
500.1k+ views
Hint: Electron mobility is defined as the ratio of velocity to the electric field. $\mu = \dfrac{{{v_E}}}{E}$ SI unit of velocity is $\dfrac{m}{s}$ and SI unit of electric field is $\dfrac{V}{m}$ then substituting these values in the mobility equation we get our required result.
Complete step by step answer:
Now from the question, we have
$\mu = \dfrac{{{v_E}}}{E}$, then $\mu = \dfrac{{\dfrac{m}{s}}}{{\dfrac{V}{m}}}$ = $\dfrac{{{m^2}}}{{Vs}}$
= ${m^2}{s^{ - 1}}{V^{ - 1}}$, which is the required answer.
Thus, option B is the correct answer.
Note:
Drift Velocity
Subatomic particles like electrons move in random directions all the time. When electrons are subjected to an electrical field they are moving randomly, but they slowly drift in one direction, within the direction of the electrical field applied. The net velocity at which these electrons drift is understood as drift velocity.
We can use the subsequent formula so as to calculate drift velocity:
I = nAvQ
Where,
I is that the current flowing through the conductor which is measured in amperes
n is that the number of electrons
A is that the area of the cross-section of the conductor which is measured in ${m^2}$
v is that the drift velocity of the electrons
Q is that the charge of an electron which is measured in Coulombs
Complete step by step answer:
Now from the question, we have
$\mu = \dfrac{{{v_E}}}{E}$, then $\mu = \dfrac{{\dfrac{m}{s}}}{{\dfrac{V}{m}}}$ = $\dfrac{{{m^2}}}{{Vs}}$
= ${m^2}{s^{ - 1}}{V^{ - 1}}$, which is the required answer.
Thus, option B is the correct answer.
Note:
Drift Velocity
Subatomic particles like electrons move in random directions all the time. When electrons are subjected to an electrical field they are moving randomly, but they slowly drift in one direction, within the direction of the electrical field applied. The net velocity at which these electrons drift is understood as drift velocity.
We can use the subsequent formula so as to calculate drift velocity:
I = nAvQ
Where,
I is that the current flowing through the conductor which is measured in amperes
n is that the number of electrons
A is that the area of the cross-section of the conductor which is measured in ${m^2}$
v is that the drift velocity of the electrons
Q is that the charge of an electron which is measured in Coulombs
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Who built the Grand Trunk Road AChandragupta Maurya class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light
