Answer
Verified
459.8k+ views
Hint: Here, we first know what Bernoulli's principle states, and then further we can prove the theorem by deriving the expression which relates the pressure and potential energy of the fluid. At last we will also note down the limitations of this theorem.
Formula used:
$\eqalign{
& K.{E_{gained}} = \dfrac{1}{2}\rho ({v_2}^2 - {v_1}^2) \cr
& P.{E_{gained}} = \rho g({h_2} - {h_1}) \cr} $
Complete answer:
Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid's potential energy.
To prove Bernoulli's theorem, consider a fluid of negligible viscosity moving with laminar flow, as shown in Figure.
Let the velocity, pressure and area of the fluid column be ${p_1}$, ${v_1}$ and ${A_1}$ at Q and ${p_2}$, ${v_2}$ and ${A_2}$ at R. Let the volume bounded by Q and R move to S and T where QS =${L_1}$, and RT = ${L_2}$.
If the fluid is incompressible:
The work done by the pressure difference per unit volume = gain in kinetic energy per unit volume + gain in potential energy per unit volume. Now:
${A_1}{L_1} = {A_2}{L_2}$
Work done is given by:
$\eqalign{& W = F \times d = p \times volume \cr
& \Rightarrow {W_{net}} = {p_1} - {p_2} \cr} $
$\eqalign{& \Rightarrow K.E = \dfrac{1}{2}m{v^2} = \dfrac{1}{2}V\rho {v^2} = \dfrac{1}{2}\rho {v^2}(\because V = 1) \cr
& \Rightarrow K.{E_{gained}} = \dfrac{1}{2}\rho ({v_2}^2 - {v_1}^2) \cr} $
$\eqalign{& {P_1} + \dfrac{1}{2}\rho {v_1}^2 + \rho g{h_1} = {P_2} + \dfrac{1}{2}\rho {v_2}^2 + \rho g{h_2} \cr
& \therefore P + \dfrac{1}{2}\rho {v^2} + \rho gh = const. \cr} $
For a horizontal tube
$\eqalign{& \because {h_1} = {h_2} \cr
& \therefore P + \dfrac{1}{2}\rho {v^2} = const. \cr} $
Therefore, this proves Bernoulli's theorem. Here we can see that if there is an increase in velocity there must be a decrease in pressure and vice versa.
Additional information:
Bernoulli's principle is named after Daniel Bernoulli who published this in his book Hydrodynamica in 1738.
Pressure applied on an object is given by the force exerted on the object per unit area. The S.I unit of pressure is Pascal.
Work done on an object is defined as the force applied on the object for a certain displacement. Further, if we define a volume, it is the quantity of three-dimensional space enclosed by a closed surface.
Note:
We should remember that no fluid is totally incompressible whereas in practice the general qualitative assumptions still hold for real fluids. One should also notice that in Bernoulli's theorem, it is given that the velocity of every particle of liquid across any cross-section is uniform which is not correct, because the velocity of the particles is different in different layers.
Formula used:
$\eqalign{
& K.{E_{gained}} = \dfrac{1}{2}\rho ({v_2}^2 - {v_1}^2) \cr
& P.{E_{gained}} = \rho g({h_2} - {h_1}) \cr} $
Complete answer:
Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid's potential energy.
To prove Bernoulli's theorem, consider a fluid of negligible viscosity moving with laminar flow, as shown in Figure.
Let the velocity, pressure and area of the fluid column be ${p_1}$, ${v_1}$ and ${A_1}$ at Q and ${p_2}$, ${v_2}$ and ${A_2}$ at R. Let the volume bounded by Q and R move to S and T where QS =${L_1}$, and RT = ${L_2}$.
If the fluid is incompressible:
The work done by the pressure difference per unit volume = gain in kinetic energy per unit volume + gain in potential energy per unit volume. Now:
${A_1}{L_1} = {A_2}{L_2}$
Work done is given by:
$\eqalign{& W = F \times d = p \times volume \cr
& \Rightarrow {W_{net}} = {p_1} - {p_2} \cr} $
$\eqalign{& \Rightarrow K.E = \dfrac{1}{2}m{v^2} = \dfrac{1}{2}V\rho {v^2} = \dfrac{1}{2}\rho {v^2}(\because V = 1) \cr
& \Rightarrow K.{E_{gained}} = \dfrac{1}{2}\rho ({v_2}^2 - {v_1}^2) \cr} $
$\eqalign{& {P_1} + \dfrac{1}{2}\rho {v_1}^2 + \rho g{h_1} = {P_2} + \dfrac{1}{2}\rho {v_2}^2 + \rho g{h_2} \cr
& \therefore P + \dfrac{1}{2}\rho {v^2} + \rho gh = const. \cr} $
For a horizontal tube
$\eqalign{& \because {h_1} = {h_2} \cr
& \therefore P + \dfrac{1}{2}\rho {v^2} = const. \cr} $
Therefore, this proves Bernoulli's theorem. Here we can see that if there is an increase in velocity there must be a decrease in pressure and vice versa.
Additional information:
Bernoulli's principle is named after Daniel Bernoulli who published this in his book Hydrodynamica in 1738.
Pressure applied on an object is given by the force exerted on the object per unit area. The S.I unit of pressure is Pascal.
Work done on an object is defined as the force applied on the object for a certain displacement. Further, if we define a volume, it is the quantity of three-dimensional space enclosed by a closed surface.
Note:
We should remember that no fluid is totally incompressible whereas in practice the general qualitative assumptions still hold for real fluids. One should also notice that in Bernoulli's theorem, it is given that the velocity of every particle of liquid across any cross-section is uniform which is not correct, because the velocity of the particles is different in different layers.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Find the value of the expression given below sin 30circ class 11 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Who is the leader of the Lok Sabha A Chief Minister class 11 social science CBSE
Try out challenging quizzes on this topic
made by experts!
made by experts!
Take me there!