Answer
Verified
455.7k+ views
Hint: Concept conversion of one system of units into another as SI and CGS are the two different systems of units. To find the ratio, one must know their inter conversion.
$
{n_1}{u_1} = {n_2}{u_2} \\
\Rightarrow {n_1}\left[ {M_1^a{\text{ }}L_1^b{\text{ }}T_1^C} \right] = {n_2}\left[ {M_2^a{\text{ }}L_2^b{\text{ }}T_2^c} \right] \\
$
Complete step by step answer:
$ \to $ Conversion of one system of units into another is based upon the fact that the magnitude of a physical quantity remains the same, whatever may be the system of units.
$ \to $ We know that SI units of energy are joule (J) and cgs units of energy are erg
$ \to $ Dimensional formula of energy is
Energy $ = \dfrac{1}{2}m{v^2}$
$ = \left[ M \right]{\left[ {L{T^{ - 1}}} \right]^2}$…… (as$V = \dfrac{d}{t}$$v = \dfrac{L}{T} = L{T^{ - 1}}$)
Energy $ = \left[ {M{L^2}{T^{ - 2}}} \right]$
Now, ${n_1}\left[ {M_1^a{\text{ L}}_1^b{\text{ T}}_1^c} \right] = {n_2}\left[ {M_2^a{\text{ L}}_2^b{\text{ T}}_2^c} \right]$ …. (i)
Here, $a = 1,{\text{ b}} = 2,{\text{ c}} = - 2$
Here, $\left[ M \right]$ represent the dimensional formula of mass
$\left[ L \right]$ Represents the dimensional formula of length $\left[ T \right]$ represent the dimensional formula of time
Putting all these values in equation (i), we get
\[
{n_1}\left[ {M_1^a{\text{ L}}_1^b{\text{ T}}_1^c} \right] = {n_2}\left[ {M_2^a{\text{ L}}_2^b{\text{ T}}_2^c} \right] \\
{n_2} = {n_1}\left[ {\dfrac{{{M_1}}}{{{M_2}}}} \right]_2^a\left[ {\dfrac{{{L_1}}}{{{L_2}}}} \right]_{}^b{\left[ {\dfrac{{{T_1}}}{{{T_2}}}} \right]^c} \\
{n_2} = 1{\left[ {\dfrac{{1000g}}{{1g}}} \right]^1}{\left[ {\dfrac{{100cm}}{{1cm}}} \right]^2}{\left[ {\dfrac{{1\sec }}{{1\sec }}} \right]^{ - 2}} \\
{n_2} = 1 \times 1000 \times {\left( {100} \right)^2} \times {\left( 1 \right)^{ - 2}} \\
{n_2} = {10^7} \\
\]
On solving this, we have
So, $1$ Joule $ = {10^7}$ ergs
Ration of SI to CGS $ = \dfrac{{Joule}}{{erg}}$
Substituting the values of joules in ergs
$
= \dfrac{{{{10}^7}erg}}{{erg}} \\
= {10^7} \\
$
Note:
Remember that they have asked for a ratio of SI units of energy to the CGS units of energy, so the correct option is ${10^7}$ not${10^{ - 7}}$. Also, the dimensional formula of work done and all energies are the same.
$
{n_1}{u_1} = {n_2}{u_2} \\
\Rightarrow {n_1}\left[ {M_1^a{\text{ }}L_1^b{\text{ }}T_1^C} \right] = {n_2}\left[ {M_2^a{\text{ }}L_2^b{\text{ }}T_2^c} \right] \\
$
Complete step by step answer:
$ \to $ Conversion of one system of units into another is based upon the fact that the magnitude of a physical quantity remains the same, whatever may be the system of units.
$ \to $ We know that SI units of energy are joule (J) and cgs units of energy are erg
$ \to $ Dimensional formula of energy is
Energy $ = \dfrac{1}{2}m{v^2}$
$ = \left[ M \right]{\left[ {L{T^{ - 1}}} \right]^2}$…… (as$V = \dfrac{d}{t}$$v = \dfrac{L}{T} = L{T^{ - 1}}$)
Energy $ = \left[ {M{L^2}{T^{ - 2}}} \right]$
Now, ${n_1}\left[ {M_1^a{\text{ L}}_1^b{\text{ T}}_1^c} \right] = {n_2}\left[ {M_2^a{\text{ L}}_2^b{\text{ T}}_2^c} \right]$ …. (i)
Here, $a = 1,{\text{ b}} = 2,{\text{ c}} = - 2$
Here, $\left[ M \right]$ represent the dimensional formula of mass
$\left[ L \right]$ Represents the dimensional formula of length $\left[ T \right]$ represent the dimensional formula of time
SI | CGS |
${M_1} = 1kg = 1000g$ | ${M_2} = 1g$ |
${L_1} = 1m = 100cm$ | ${L_2} = 1cm$ |
${T_1} = 1\sec $ | ${T_2} = 1\sec $ |
${n_1} = 1$(joule) | ${n_2} = ?$ erg |
Putting all these values in equation (i), we get
\[
{n_1}\left[ {M_1^a{\text{ L}}_1^b{\text{ T}}_1^c} \right] = {n_2}\left[ {M_2^a{\text{ L}}_2^b{\text{ T}}_2^c} \right] \\
{n_2} = {n_1}\left[ {\dfrac{{{M_1}}}{{{M_2}}}} \right]_2^a\left[ {\dfrac{{{L_1}}}{{{L_2}}}} \right]_{}^b{\left[ {\dfrac{{{T_1}}}{{{T_2}}}} \right]^c} \\
{n_2} = 1{\left[ {\dfrac{{1000g}}{{1g}}} \right]^1}{\left[ {\dfrac{{100cm}}{{1cm}}} \right]^2}{\left[ {\dfrac{{1\sec }}{{1\sec }}} \right]^{ - 2}} \\
{n_2} = 1 \times 1000 \times {\left( {100} \right)^2} \times {\left( 1 \right)^{ - 2}} \\
{n_2} = {10^7} \\
\]
On solving this, we have
So, $1$ Joule $ = {10^7}$ ergs
Ration of SI to CGS $ = \dfrac{{Joule}}{{erg}}$
Substituting the values of joules in ergs
$
= \dfrac{{{{10}^7}erg}}{{erg}} \\
= {10^7} \\
$
Note:
Remember that they have asked for a ratio of SI units of energy to the CGS units of energy, so the correct option is ${10^7}$ not${10^{ - 7}}$. Also, the dimensional formula of work done and all energies are the same.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is BLO What is the full form of BLO class 8 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE