Answer
Verified
110.7k+ views
Hint: To solve this question, we need to know the basic theory related to the physical quantities with its dimension and proper units as some of them describe below. As we know Planck’s constant is a quantity with the dimensions of “${{energy \times time}}$” and comes in units like “\[{{Joules \times Second}}\]”. And by using these first we will get the Planck's constant (h) in SI unit and then in CGS unit and then after taking its ratio as described below.
Formula used:
${{E = hf}}$ and
${{h = }}\dfrac{{{{energy}}}}{{\dfrac{{{c}}}{{{\lambda }}}}}$
Where, E is energy, c is speed of light, h is Planck's constant and ${{\lambda }}$ is wavelength.
Complete step by step solution:
Planck's constant is represented by h in physics. And it relates the energy of one quantum (photon) electromagnetic radiation to the frequency of that radiation.
In the centimeter-gram-second (CGS) (which is also called small-unit metric system), it is equal to approximately ${{6}}{{.6 \times 1}}{{{0}}^{{{ - 27}}}}{{Erg second}}$.
The energy E contained in a light photon, which generally represents the smallest possible 'packet' of energy in an electromagnetic wave channel and it is directly proportional to the frequency (f) according to the below equation:
${{E = hf}}$
Where, E represents contained in a light photon,
h represents Planck's constant and
f represents frequency.
If f is given in hertz (the unit measure of frequency) and E is given in joules, then in this case we know it is equal to approximately ${{6}}{{.6 \times 1}}{{{0}}^{{{ - 27}}}}{{Erg second}}$.
And finally, we have,
$\Rightarrow$ ${{E = 6}}{{.6 \times 1}}{{{0}}^{{{ - 27}}}} \times {{f}}$
As we know,
$\Rightarrow$ ${{E = hf}}$
$\Rightarrow$ ${{h = }}\dfrac{{{{energy}}}}{{\dfrac{{{c}}}{{{\lambda }}}}}$
Where c is the speed of light, h is Planck's constant and ${{\lambda }}$ is wavelength.
Dimensional formula of energy and speed of light in above equation, we get
Energy = $\left[ {{{M}}{{{L}}^{{2}}}{{{T}}^{{{ - 2}}}}} \right]$and speed of light = $\left[ {{{L}}{{{T}}^{{{ - 1}}}}} \right]$
$\Rightarrow$ ${{h = }}\dfrac{{\left[ {{{M}}{{{L}}^{{2}}}{{{T}}^{{{ - 2}}}}} \right]}}{{\dfrac{{\left[ {{{L}}{{{T}}^{{{ - 1}}}}} \right]}}{{\left[ {{L}} \right]}}}}$
$\Rightarrow$ ${{h = M}}{{{L}}^{{2}}}{{{T}}^{{{ - 1}}}}$
Thus, h in SI unit is ${{kg}}\dfrac{{{{{m}}^{{2}}}}}{{{s}}}$.
And h in c.g.s unit = $\left( {{{1}}{{{0}}^{{3}}}{{gm}}} \right){{ \times }}{\left( {{{1}}{{{0}}^{{2}}}} \right)^{{2}}}\dfrac{{{{c}}{{{m}}^{{2}}}}}{{{s}}}$ = ${{1}}{{{0}}^{{7}}}{{gm}}\dfrac{{{{c}}{{{m}}^{{2}}}}}{{{s}}}$
Now, we have to calculate the ratio of SI units to the CGS unit.
Ratio= $\dfrac{{\left( {{{1}}{{{0}}^{{3}}}} \right){{ \times }}{{\left( {{{1}}{{{0}}^{{2}}}} \right)}^{{2}}}}}{1}$= ${{1}}{{{0}}^{{7}}}:1$
Thus, the ratio of SI unit to the CGS unit is ${{1}}{{{0}}^{{7}}}:1$.
Therefore, option (A) is the correct answer.
Note: Always remember that SI unit is same everywhere as in cgs unit there are different units of measurement but SI unit is adopted internationally and the units are fixed and do not change at any place.
Formula used:
${{E = hf}}$ and
${{h = }}\dfrac{{{{energy}}}}{{\dfrac{{{c}}}{{{\lambda }}}}}$
Where, E is energy, c is speed of light, h is Planck's constant and ${{\lambda }}$ is wavelength.
Complete step by step solution:
Planck's constant is represented by h in physics. And it relates the energy of one quantum (photon) electromagnetic radiation to the frequency of that radiation.
In the centimeter-gram-second (CGS) (which is also called small-unit metric system), it is equal to approximately ${{6}}{{.6 \times 1}}{{{0}}^{{{ - 27}}}}{{Erg second}}$.
The energy E contained in a light photon, which generally represents the smallest possible 'packet' of energy in an electromagnetic wave channel and it is directly proportional to the frequency (f) according to the below equation:
${{E = hf}}$
Where, E represents contained in a light photon,
h represents Planck's constant and
f represents frequency.
If f is given in hertz (the unit measure of frequency) and E is given in joules, then in this case we know it is equal to approximately ${{6}}{{.6 \times 1}}{{{0}}^{{{ - 27}}}}{{Erg second}}$.
And finally, we have,
$\Rightarrow$ ${{E = 6}}{{.6 \times 1}}{{{0}}^{{{ - 27}}}} \times {{f}}$
As we know,
$\Rightarrow$ ${{E = hf}}$
$\Rightarrow$ ${{h = }}\dfrac{{{{energy}}}}{{\dfrac{{{c}}}{{{\lambda }}}}}$
Where c is the speed of light, h is Planck's constant and ${{\lambda }}$ is wavelength.
Dimensional formula of energy and speed of light in above equation, we get
Energy = $\left[ {{{M}}{{{L}}^{{2}}}{{{T}}^{{{ - 2}}}}} \right]$and speed of light = $\left[ {{{L}}{{{T}}^{{{ - 1}}}}} \right]$
$\Rightarrow$ ${{h = }}\dfrac{{\left[ {{{M}}{{{L}}^{{2}}}{{{T}}^{{{ - 2}}}}} \right]}}{{\dfrac{{\left[ {{{L}}{{{T}}^{{{ - 1}}}}} \right]}}{{\left[ {{L}} \right]}}}}$
$\Rightarrow$ ${{h = M}}{{{L}}^{{2}}}{{{T}}^{{{ - 1}}}}$
Thus, h in SI unit is ${{kg}}\dfrac{{{{{m}}^{{2}}}}}{{{s}}}$.
And h in c.g.s unit = $\left( {{{1}}{{{0}}^{{3}}}{{gm}}} \right){{ \times }}{\left( {{{1}}{{{0}}^{{2}}}} \right)^{{2}}}\dfrac{{{{c}}{{{m}}^{{2}}}}}{{{s}}}$ = ${{1}}{{{0}}^{{7}}}{{gm}}\dfrac{{{{c}}{{{m}}^{{2}}}}}{{{s}}}$
Now, we have to calculate the ratio of SI units to the CGS unit.
Ratio= $\dfrac{{\left( {{{1}}{{{0}}^{{3}}}} \right){{ \times }}{{\left( {{{1}}{{{0}}^{{2}}}} \right)}^{{2}}}}}{1}$= ${{1}}{{{0}}^{{7}}}:1$
Thus, the ratio of SI unit to the CGS unit is ${{1}}{{{0}}^{{7}}}:1$.
Therefore, option (A) is the correct answer.
Note: Always remember that SI unit is same everywhere as in cgs unit there are different units of measurement but SI unit is adopted internationally and the units are fixed and do not change at any place.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main