Answer
Verified
482.7k+ views
Hint: In this question we find the dimensional formula of planck's constant by using the equation of the energy of photons that is $E = h\nu $ as $\left[ {M{L^2}{T^{ - 1}}} \right]$ . Then we find the dimensional formula of moment of inertia using the formula of \[I = \sum\limits_{i = 1}^n {{M_i}x_i^2} \] as $\left[ {{M^1}{L^2}{T^0}} \right]$ . Now we find the ratio of both and get the dimensional formula of result.
Complete step-by-step solution -
First, we find the dimensional formula of planck's constant. For this, we use the equation of the energy of photons that is
$E = h\nu $
Here E is the energy of the photons whose unit is given as $\left[ {M{L^2}{T^{ - 2}}} \right]$ .
And $\nu $ is the frequency whose unit is $\left[ {{T^{ - 1}}} \right]$ .
Now we can find the planck's constant as
$h = \dfrac{E}{\nu } = \dfrac{{\left[ {M{L^2}{T^{ - 2}}} \right]}}{{\left[ {{T^{ - 1}}} \right]}}$
$h = \left[ {M{L^2}{T^{ - 1}}} \right]$
Now we know the expression of moment of inertia that is
\[I = \sum\limits_{i = 1}^n {{M_i}x_i^2} \]
Here \[{M_i}\] is the mass of the \[{i^{th}}\] particle.
And \[{x_i}\] is the perpendicular distance of the particle from the axis of rotation.
As can be seen from the above expression that the SI unit of moment of inertia is $Kg{m^2}$
We can calculate the dimensional formula from the SI unit that is
$ \Rightarrow Kg{m^2} = \left[ {{M^1}{L^0}{T^0}} \right]\left[ {{M^0}{L^2}{T^0}} \right]$
$ \Rightarrow \left[ {{M^1}{L^2}{T^0}} \right]$
So dimensional formula of moment of inertia is $\left[ {{M^1}{L^2}{T^0}} \right]$
Now the dimensional formula of the ratio of planck's constants and moment of inertia is given as
$\dfrac{h}{I} = \dfrac{{\left[ {M{L^2}{T^{ - 1}}} \right]}}{{\left[ {{M^1}{L^2}{T^0}} \right]}} = \left[ {{T^{ - 1}}} \right]$
We know that the unit of frequency is Hertz which is second inverse that is
$f = \dfrac{1}{t} = \left[ {T{}^{ - 1}} \right]$
Hence, the dimensional formula of ratio of planck's constants and moment of inertia is the same as that of the frequency.
Note: For these types of questions we need to know the dimensional formulas of some basic constants like the moment of inertia, planck's constant, frequency, energy, force, etc. For these types of questions we first convert the formula in the form of the fundamental dimension formula.
Complete step-by-step solution -
First, we find the dimensional formula of planck's constant. For this, we use the equation of the energy of photons that is
$E = h\nu $
Here E is the energy of the photons whose unit is given as $\left[ {M{L^2}{T^{ - 2}}} \right]$ .
And $\nu $ is the frequency whose unit is $\left[ {{T^{ - 1}}} \right]$ .
Now we can find the planck's constant as
$h = \dfrac{E}{\nu } = \dfrac{{\left[ {M{L^2}{T^{ - 2}}} \right]}}{{\left[ {{T^{ - 1}}} \right]}}$
$h = \left[ {M{L^2}{T^{ - 1}}} \right]$
Now we know the expression of moment of inertia that is
\[I = \sum\limits_{i = 1}^n {{M_i}x_i^2} \]
Here \[{M_i}\] is the mass of the \[{i^{th}}\] particle.
And \[{x_i}\] is the perpendicular distance of the particle from the axis of rotation.
As can be seen from the above expression that the SI unit of moment of inertia is $Kg{m^2}$
We can calculate the dimensional formula from the SI unit that is
$ \Rightarrow Kg{m^2} = \left[ {{M^1}{L^0}{T^0}} \right]\left[ {{M^0}{L^2}{T^0}} \right]$
$ \Rightarrow \left[ {{M^1}{L^2}{T^0}} \right]$
So dimensional formula of moment of inertia is $\left[ {{M^1}{L^2}{T^0}} \right]$
Now the dimensional formula of the ratio of planck's constants and moment of inertia is given as
$\dfrac{h}{I} = \dfrac{{\left[ {M{L^2}{T^{ - 1}}} \right]}}{{\left[ {{M^1}{L^2}{T^0}} \right]}} = \left[ {{T^{ - 1}}} \right]$
We know that the unit of frequency is Hertz which is second inverse that is
$f = \dfrac{1}{t} = \left[ {T{}^{ - 1}} \right]$
Hence, the dimensional formula of ratio of planck's constants and moment of inertia is the same as that of the frequency.
Note: For these types of questions we need to know the dimensional formulas of some basic constants like the moment of inertia, planck's constant, frequency, energy, force, etc. For these types of questions we first convert the formula in the form of the fundamental dimension formula.
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
10 examples of friction in our daily life
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
State the laws of reflection of light