
The ratio of dimensions of planck constant and that of the moment of inertia has the dimension of
A). Time
B). Frequency
C). Angular momentum
D). Velocity
Answer
527.1k+ views
Hint: In this question we find the dimensional formula of planck's constant by using the equation of the energy of photons that is $E = h\nu $ as $\left[ {M{L^2}{T^{ - 1}}} \right]$ . Then we find the dimensional formula of moment of inertia using the formula of \[I = \sum\limits_{i = 1}^n {{M_i}x_i^2} \] as $\left[ {{M^1}{L^2}{T^0}} \right]$ . Now we find the ratio of both and get the dimensional formula of result.
Complete step-by-step solution -
First, we find the dimensional formula of planck's constant. For this, we use the equation of the energy of photons that is
$E = h\nu $
Here E is the energy of the photons whose unit is given as $\left[ {M{L^2}{T^{ - 2}}} \right]$ .
And $\nu $ is the frequency whose unit is $\left[ {{T^{ - 1}}} \right]$ .
Now we can find the planck's constant as
$h = \dfrac{E}{\nu } = \dfrac{{\left[ {M{L^2}{T^{ - 2}}} \right]}}{{\left[ {{T^{ - 1}}} \right]}}$
$h = \left[ {M{L^2}{T^{ - 1}}} \right]$
Now we know the expression of moment of inertia that is
\[I = \sum\limits_{i = 1}^n {{M_i}x_i^2} \]
Here \[{M_i}\] is the mass of the \[{i^{th}}\] particle.
And \[{x_i}\] is the perpendicular distance of the particle from the axis of rotation.
As can be seen from the above expression that the SI unit of moment of inertia is $Kg{m^2}$
We can calculate the dimensional formula from the SI unit that is
$ \Rightarrow Kg{m^2} = \left[ {{M^1}{L^0}{T^0}} \right]\left[ {{M^0}{L^2}{T^0}} \right]$
$ \Rightarrow \left[ {{M^1}{L^2}{T^0}} \right]$
So dimensional formula of moment of inertia is $\left[ {{M^1}{L^2}{T^0}} \right]$
Now the dimensional formula of the ratio of planck's constants and moment of inertia is given as
$\dfrac{h}{I} = \dfrac{{\left[ {M{L^2}{T^{ - 1}}} \right]}}{{\left[ {{M^1}{L^2}{T^0}} \right]}} = \left[ {{T^{ - 1}}} \right]$
We know that the unit of frequency is Hertz which is second inverse that is
$f = \dfrac{1}{t} = \left[ {T{}^{ - 1}} \right]$
Hence, the dimensional formula of ratio of planck's constants and moment of inertia is the same as that of the frequency.
Note: For these types of questions we need to know the dimensional formulas of some basic constants like the moment of inertia, planck's constant, frequency, energy, force, etc. For these types of questions we first convert the formula in the form of the fundamental dimension formula.
Complete step-by-step solution -
First, we find the dimensional formula of planck's constant. For this, we use the equation of the energy of photons that is
$E = h\nu $
Here E is the energy of the photons whose unit is given as $\left[ {M{L^2}{T^{ - 2}}} \right]$ .
And $\nu $ is the frequency whose unit is $\left[ {{T^{ - 1}}} \right]$ .
Now we can find the planck's constant as
$h = \dfrac{E}{\nu } = \dfrac{{\left[ {M{L^2}{T^{ - 2}}} \right]}}{{\left[ {{T^{ - 1}}} \right]}}$
$h = \left[ {M{L^2}{T^{ - 1}}} \right]$
Now we know the expression of moment of inertia that is
\[I = \sum\limits_{i = 1}^n {{M_i}x_i^2} \]
Here \[{M_i}\] is the mass of the \[{i^{th}}\] particle.
And \[{x_i}\] is the perpendicular distance of the particle from the axis of rotation.
As can be seen from the above expression that the SI unit of moment of inertia is $Kg{m^2}$
We can calculate the dimensional formula from the SI unit that is
$ \Rightarrow Kg{m^2} = \left[ {{M^1}{L^0}{T^0}} \right]\left[ {{M^0}{L^2}{T^0}} \right]$
$ \Rightarrow \left[ {{M^1}{L^2}{T^0}} \right]$
So dimensional formula of moment of inertia is $\left[ {{M^1}{L^2}{T^0}} \right]$
Now the dimensional formula of the ratio of planck's constants and moment of inertia is given as
$\dfrac{h}{I} = \dfrac{{\left[ {M{L^2}{T^{ - 1}}} \right]}}{{\left[ {{M^1}{L^2}{T^0}} \right]}} = \left[ {{T^{ - 1}}} \right]$
We know that the unit of frequency is Hertz which is second inverse that is
$f = \dfrac{1}{t} = \left[ {T{}^{ - 1}} \right]$
Hence, the dimensional formula of ratio of planck's constants and moment of inertia is the same as that of the frequency.
Note: For these types of questions we need to know the dimensional formulas of some basic constants like the moment of inertia, planck's constant, frequency, energy, force, etc. For these types of questions we first convert the formula in the form of the fundamental dimension formula.
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Sanjeevani booti brought about by Lord Hanuman to cure class 11 biology CBSE

A police jeep on patrol duty on a national highway class 11 physics CBSE

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE
