
The question has Statement I and Statement II. Of the four choices given after the Statements, choose the one that best describes the two statements.
Statement – I: A point particle of mass m moving with speed v collides with stationary point particle of mass M. If the maximum energy loss possible is given as f $(\dfrac{1}{2}m{{v}^{2}})$ then $f=\left( \dfrac{m}{M+m} \right)$ .
Statement – II: Maximum energy loss occurs when the particles get stuck together as a result of the collision.
A: Statement I is true, Statement II is true, Statement II is not a correct explanation of Statement I.
B: Statement I is true, Statement II is false.
C: Statement I is false, Statement II is true.
D: Statement I is true, Statement II is true, Statement II is a correct explanation of Statement I.
Answer
509.7k+ views
Hint: The maximum energy loss is the difference in kinetic energy before collision and kinetic energy after collision. When two objects collide the total momentum before collision is equal to the momentum after collision in the absence of external forces. That is the law of conservation of momentum.
Formula used:
Kinetic energy, $K.E=\dfrac{{{p}^{2}}}{2m}$
Complete answer:
Let us consider two particles of masses ${{m}_{1}}$ and ${{m}_{2}}$ moving with velocities ${{u}_{1}}$ and ${{u}_{2}}$ respectively before collision. If there velocities after collision are ${{v}_{1}}$ and ${{v}_{2}}$, then according to conservation of momentum we have,
${{m}_{1}}{{u}_{1}}+{{m}_{2}}{{u}_{2}}={{m}_{1}}{{v}_{1}}+{{m}_{2}}{{v}_{2}}$
Here, the initial and final positions are widely separated so that the interaction forces between the particles becomes effectively zero. Hence the potential energy before and after remains the same. If the collision is perfectly elastic, the total kinetic energy of the particles is not changed by the collision.
$\dfrac{1}{2}{{m}_{1}}u_{1}^{2}+\dfrac{1}{2}{{m}_{2}}u_{2}^{2}=\dfrac{1}{2}{{m}_{1}}v_{1}^{2}+\dfrac{1}{2}{{m}_{2}}v_{2}^{2}$
According to the kinetic theory of gases, such elastic collision occurs between the molecules of a gas. This type of collision mostly takes place between atoms, electrons and protons.
In case of inelastic collision, a part of kinetic energy is converted to some other forms. This energy appears in the form of thermal energy in macroscopic particles.
Let p be the momentum before and after collision.
We know that,
Kinetic energy$K.E=\dfrac{{{p}^{2}}}{2m}$
Maximum energy loss $=\dfrac{{{p}^{2}}}{2m}-\dfrac{{{p}^{2}}}{2(m+M)}$
$=\dfrac{{{p}^{2}}}{2m}\left[ 1-\dfrac{m}{m+M} \right]$
$=\dfrac{1}{2}m{{v}^{2}}\left[ \dfrac{M}{m+M} \right]$
Hence statement I is false.
In inelastic collision loss of energy is maximum.
Thus statement II is true.
Thus option (C) is correct.
Note:
Maximum energy loss occurs when the particles strike together as a result of collision. The collision imparts force only along the line of collision, the collision does not change the velocities that are tangent to the point of collision. The velocities along the line of collision can be used as the same one dimensional equation.
Formula used:
Kinetic energy, $K.E=\dfrac{{{p}^{2}}}{2m}$
Complete answer:
Let us consider two particles of masses ${{m}_{1}}$ and ${{m}_{2}}$ moving with velocities ${{u}_{1}}$ and ${{u}_{2}}$ respectively before collision. If there velocities after collision are ${{v}_{1}}$ and ${{v}_{2}}$, then according to conservation of momentum we have,
${{m}_{1}}{{u}_{1}}+{{m}_{2}}{{u}_{2}}={{m}_{1}}{{v}_{1}}+{{m}_{2}}{{v}_{2}}$
Here, the initial and final positions are widely separated so that the interaction forces between the particles becomes effectively zero. Hence the potential energy before and after remains the same. If the collision is perfectly elastic, the total kinetic energy of the particles is not changed by the collision.
$\dfrac{1}{2}{{m}_{1}}u_{1}^{2}+\dfrac{1}{2}{{m}_{2}}u_{2}^{2}=\dfrac{1}{2}{{m}_{1}}v_{1}^{2}+\dfrac{1}{2}{{m}_{2}}v_{2}^{2}$
According to the kinetic theory of gases, such elastic collision occurs between the molecules of a gas. This type of collision mostly takes place between atoms, electrons and protons.
In case of inelastic collision, a part of kinetic energy is converted to some other forms. This energy appears in the form of thermal energy in macroscopic particles.
Let p be the momentum before and after collision.
We know that,
Kinetic energy$K.E=\dfrac{{{p}^{2}}}{2m}$
Maximum energy loss $=\dfrac{{{p}^{2}}}{2m}-\dfrac{{{p}^{2}}}{2(m+M)}$
$=\dfrac{{{p}^{2}}}{2m}\left[ 1-\dfrac{m}{m+M} \right]$
$=\dfrac{1}{2}m{{v}^{2}}\left[ \dfrac{M}{m+M} \right]$
Hence statement I is false.
In inelastic collision loss of energy is maximum.
Thus statement II is true.
Thus option (C) is correct.
Note:
Maximum energy loss occurs when the particles strike together as a result of collision. The collision imparts force only along the line of collision, the collision does not change the velocities that are tangent to the point of collision. The velocities along the line of collision can be used as the same one dimensional equation.
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Sanjeevani booti brought about by Lord Hanuman to cure class 11 biology CBSE

A police jeep on patrol duty on a national highway class 11 physics CBSE

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Trending doubts
How much is 23 kg in pounds class 11 chemistry CBSE

What was the first capital of Magadha APatliputra BVaishali class 11 social science CBSE

How does Amoeba obtain its food a Endocytosis b Exocytosis class 11 biology ICSE

A difference between diffusion and osmosis is a A semipermeable class 11 chemistry CBSE

Which five year plan also known as Gadgil Yojana A class 11 sst CBSE

The main function of the constituent assembly was A class 11 social science CBSE
