
The potential at a point due to an electric dipole will be maximum and minimum when the angles between the axis of the dipole and the line joining the point to the dipole are respectively
A. \[{90^0}\,and\,{\rm{ 18}}{{\rm{0}}^0}\]
B. \[{0^0}\,and\,{\rm{ 9}}{{\rm{0}}^0}\]
C. \[{90^0}\,and\,{\rm{ }}{{\rm{0}}^0}\]
D. \[{0^0}\,and\,{\rm{ 18}}{{\rm{0}}^0}\]
Answer
174k+ views
Hint:The values of maximum and minimum of the potential at a point due to an electric dipole will be determined by the angles like if \[\theta = {0^0},\cos \theta = 1\] then the electric potential will be maximum at the dipole axis and if \[\theta = {180^0},\cos \theta = - 1\] then the electric potential will be minimum at the dipole axis
Formula used:
The potential due to this dipole is given as,
\[V = \dfrac{{p\cos \theta }}{{4\pi {\varepsilon _0}{r^2}}}\]
Where,
p is dipole moment,
r is distance from dipole,
k is coulomb’s constant,\[k = \dfrac{1}{{4\pi {\varepsilon _0}}} = 9 \times {10^9}N{m^2}\] and \[{\varepsilon _0}\] is permittivity.
Complete step by step solution:
The potential due to this dipole is:
\[V = \dfrac{{p\cos \theta }}{{4\pi {\varepsilon _0}{r^2}}}\]
If \[\theta = {0^0}\], then we have
\[\begin{array}{l}V = \dfrac{{p\cos {0^0}}}{{4\pi {\varepsilon _0}{r^2}}}\\ \Rightarrow V{\rm{ = }}\dfrac{{kp}}{{{r^2}}}\end{array}\]
This is the maximum potential,
\[{V_{\max }} = \dfrac{{kp}}{{{r^2}}}\]
Now If \[\theta = {180^0}\], then we have
\[\begin{array}{l}V = \dfrac{{p\cos {{180}^0}}}{{4\pi {\varepsilon _0}{r^2}}}\\ \Rightarrow V{\rm{ = - }}\dfrac{{kp}}{{{r^2}}}\end{array}\]
This is the minimum potential,
\[{V_{\min }} = - \dfrac{{kp}}{{{r^2}}}\]
Therefore the potential at a point due to an electric dipole will be maximum and minimum when the angles between the axis of the dipole and the line joining the point to the dipole are \[{0^0}\,and\,{\rm{ 18}}{{\rm{0}}^0}\].
Hence option D is the correct answer.
Note:The electric potential will be zero at the perpendicular axis of the dipole when \[\theta = {90^0}\] . As we know electric dipoles consist of two charges equal in magnitude (q) but opposite in nature one is a positive charge and other is a negative charge. Electric potential obeys superposition principle due to electric dipole as a whole can be sum of potential due to both the charges positive and negative.
Formula used:
The potential due to this dipole is given as,
\[V = \dfrac{{p\cos \theta }}{{4\pi {\varepsilon _0}{r^2}}}\]
Where,
p is dipole moment,
r is distance from dipole,
k is coulomb’s constant,\[k = \dfrac{1}{{4\pi {\varepsilon _0}}} = 9 \times {10^9}N{m^2}\] and \[{\varepsilon _0}\] is permittivity.
Complete step by step solution:
The potential due to this dipole is:
\[V = \dfrac{{p\cos \theta }}{{4\pi {\varepsilon _0}{r^2}}}\]
If \[\theta = {0^0}\], then we have
\[\begin{array}{l}V = \dfrac{{p\cos {0^0}}}{{4\pi {\varepsilon _0}{r^2}}}\\ \Rightarrow V{\rm{ = }}\dfrac{{kp}}{{{r^2}}}\end{array}\]
This is the maximum potential,
\[{V_{\max }} = \dfrac{{kp}}{{{r^2}}}\]
Now If \[\theta = {180^0}\], then we have
\[\begin{array}{l}V = \dfrac{{p\cos {{180}^0}}}{{4\pi {\varepsilon _0}{r^2}}}\\ \Rightarrow V{\rm{ = - }}\dfrac{{kp}}{{{r^2}}}\end{array}\]
This is the minimum potential,
\[{V_{\min }} = - \dfrac{{kp}}{{{r^2}}}\]
Therefore the potential at a point due to an electric dipole will be maximum and minimum when the angles between the axis of the dipole and the line joining the point to the dipole are \[{0^0}\,and\,{\rm{ 18}}{{\rm{0}}^0}\].
Hence option D is the correct answer.
Note:The electric potential will be zero at the perpendicular axis of the dipole when \[\theta = {90^0}\] . As we know electric dipoles consist of two charges equal in magnitude (q) but opposite in nature one is a positive charge and other is a negative charge. Electric potential obeys superposition principle due to electric dipole as a whole can be sum of potential due to both the charges positive and negative.
Recently Updated Pages
JEE Main 2025-26 Atoms and Nuclei Mock Test: Free Practice Online

JEE Main 2025-26: Dual Nature of Matter and Radiation Mock Test

JEE Main 2025-26 Electronic Devices Mock Test – Free Practice

JEE Main Mock Test 2025-26: Experimental Skills Chapter Online Practice

JEE Main 2025-26 Current Electricity Mock Test: Free Practice Online

JEE Main 2025-26 Rotational Motion Mock Test – Free Practice Online

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Electric field due to uniformly charged sphere class 12 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Essential Derivations for CBSE Class 12 Physics: Stepwise & PDF Solutions

Electron Gain Enthalpy and Electron Affinity for JEE

What is Hybridisation in Chemistry?
