
The length of a metal wire is \[{l_1}\] when the tension in it is \[{T_1}\] and is \[{l_2}\] when the tension is \[{T_2}\] . The natural length of wire is
(a)\[\dfrac{{{l_1} + {l_2}}}{2}\]
(b)$\sqrt {{l_1}{l_2}} $
(c) $\dfrac{{{l_1}{T_2} - {l_2}{T_1}}}{{{T_2} - {T_1}}}$
(d) $\dfrac{{{l_1}{T_2} + {l_2}{T_1}}}{{{T_2} + {T_1}}}$
Answer
173.7k+ views
Hint: Length, change in length and tension appear together in the expression for Young’s Modulus of elasticity. Y does not change for a given material.
Formula Used:
1. Young’s Modulus of elasticity: $Y = \dfrac{{Stress}}{{Strain}}$ ……(1)
2. Stress is defined as: $Stress = \dfrac{F}{A}$ ……(2)
Where,
F is force acted on the object
A is the area on which the force acts.
3. Strain is defined as: $Strain = \dfrac{{\Delta l}}{{{l_0}}}$ ……(3)
Where,
$\Delta l$ is the change in length of the object when force is applied on it
${l_0}$ is the original length of the object or natural length.
4. Change in length $\Delta l = {l_f} - {l_i}$ ……(4)
Where,
${l_i}$ is the initial length of the object
${l_f}$ is the final length of the object
Complete step by step answer:
Given:
1. Length of string in 1st case: \[{l_1}\]
2. Tension on string in 1st case: \[{T_1}\]
3. Length of string in 2nd case: \[{l_2}\]
4. Tension on string in 2nd case: \[{T_2}\]
To find: The natural length of the string.
Step 1:
Use eq (1), (2) and (3) to find the expression for Y in terms of length, tension and area.
\[Y = \dfrac{F}{A} \times \dfrac{{{l_0}}}{{\Delta l}}\] ……(5)
Let the natural length of the wire be ${l_0}$ and area be A.
Consider case 1.
Find $\Delta l$ using eq (4):
$\Delta l = {l_1} - {l_0}$
Force acting on the wire is tension. So, $F = {T_1}$
Use eq (5) to find Y:
\[Y = \dfrac{{{T_1}}}{A} \times \dfrac{{{l_0}}}{{{l_1} - {l_0}}}\] ……(6)
Step 2:
Consider case 2.
Find $\Delta l$ using eq (4):
$\Delta l = {l_2} - {l_0}$
Force acting on the wire is tension. So, $F = {T_2}$
Use eq (5) to find Y:
\[Y = \dfrac{{{T_2}}}{A} \times \dfrac{{{l_0}}}{{{l_2} - {l_0}}}\] ……(7)
Step 3:
Now, Young’s modulus for a material remains the same. As the wire is the same, its Y will not change. So, we can equate eq (6) and (7):
\[\dfrac{{{T_1}}}{A} \times \dfrac{{{l_0}}}{{{l_1} - {l_0}}} = \dfrac{{{T_2}}}{A} \times \dfrac{{{l_0}}}{{{l_2} - {l_0}}}\]
Simplifying:
\[
\dfrac{{{T_1}}}{{{l_1} - {l_0}}} = \dfrac{{{T_2}}}{{{l_2} - {l_0}}} \\
{T_1}({l_2} - {l_0}) = {T_2}({l_1} - {l_0}) \\
{T_1}{l_2} - {T_1}{l_0} = {T_2}{l_1} - {T_2}{l_0} \\
{l_0} = \dfrac{{{l_1}{T_2} - {l_2}{T_1}}}{{{T_2} - {T_1}}} \\
\]
Final Answer
The natural length of wire is: (c) $\dfrac{{{l_1}{T_2} - {l_2}{T_1}}}{{{T_2} - {T_1}}}$
Note: Young’s modulus of a material is an intrinsic property of the material. It is the measure of tensile strength of a material. For a particular material it is isotropic, but differs material to material.
Formula Used:
1. Young’s Modulus of elasticity: $Y = \dfrac{{Stress}}{{Strain}}$ ……(1)
2. Stress is defined as: $Stress = \dfrac{F}{A}$ ……(2)
Where,
F is force acted on the object
A is the area on which the force acts.
3. Strain is defined as: $Strain = \dfrac{{\Delta l}}{{{l_0}}}$ ……(3)
Where,
$\Delta l$ is the change in length of the object when force is applied on it
${l_0}$ is the original length of the object or natural length.
4. Change in length $\Delta l = {l_f} - {l_i}$ ……(4)
Where,
${l_i}$ is the initial length of the object
${l_f}$ is the final length of the object
Complete step by step answer:
Given:
1. Length of string in 1st case: \[{l_1}\]
2. Tension on string in 1st case: \[{T_1}\]
3. Length of string in 2nd case: \[{l_2}\]
4. Tension on string in 2nd case: \[{T_2}\]
To find: The natural length of the string.
Step 1:
Use eq (1), (2) and (3) to find the expression for Y in terms of length, tension and area.
\[Y = \dfrac{F}{A} \times \dfrac{{{l_0}}}{{\Delta l}}\] ……(5)
Let the natural length of the wire be ${l_0}$ and area be A.
Consider case 1.
Find $\Delta l$ using eq (4):
$\Delta l = {l_1} - {l_0}$
Force acting on the wire is tension. So, $F = {T_1}$
Use eq (5) to find Y:
\[Y = \dfrac{{{T_1}}}{A} \times \dfrac{{{l_0}}}{{{l_1} - {l_0}}}\] ……(6)
Step 2:
Consider case 2.
Find $\Delta l$ using eq (4):
$\Delta l = {l_2} - {l_0}$
Force acting on the wire is tension. So, $F = {T_2}$
Use eq (5) to find Y:
\[Y = \dfrac{{{T_2}}}{A} \times \dfrac{{{l_0}}}{{{l_2} - {l_0}}}\] ……(7)
Step 3:
Now, Young’s modulus for a material remains the same. As the wire is the same, its Y will not change. So, we can equate eq (6) and (7):
\[\dfrac{{{T_1}}}{A} \times \dfrac{{{l_0}}}{{{l_1} - {l_0}}} = \dfrac{{{T_2}}}{A} \times \dfrac{{{l_0}}}{{{l_2} - {l_0}}}\]
Simplifying:
\[
\dfrac{{{T_1}}}{{{l_1} - {l_0}}} = \dfrac{{{T_2}}}{{{l_2} - {l_0}}} \\
{T_1}({l_2} - {l_0}) = {T_2}({l_1} - {l_0}) \\
{T_1}{l_2} - {T_1}{l_0} = {T_2}{l_1} - {T_2}{l_0} \\
{l_0} = \dfrac{{{l_1}{T_2} - {l_2}{T_1}}}{{{T_2} - {T_1}}} \\
\]
Final Answer
The natural length of wire is: (c) $\dfrac{{{l_1}{T_2} - {l_2}{T_1}}}{{{T_2} - {T_1}}}$
Note: Young’s modulus of a material is an intrinsic property of the material. It is the measure of tensile strength of a material. For a particular material it is isotropic, but differs material to material.
Recently Updated Pages
Sets, Relations, and Functions Mock Test 2025-26

JEE Main Mock Test 2025-26: Purification & Characterisation of Organic Compounds

JEE Main 2025 Coordination Compounds Mock Test – Free Practice Online

JEE Main 2025-26 Equilibrium Mock Test: Free Practice Online

JEE Main Mock Test 2025-26: D and F Block Elements Practice

JEE Main Mock Test 2025-26: Chapter-Wise Practice Papers

Trending doubts
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE

Electron Gain Enthalpy and Electron Affinity for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

What is Hybridisation in Chemistry?

Assertion Minimum number of nonequal Vectors in a plane class 11 physics JEE_Main

Other Pages
NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids - 2025-26

JEE Advanced 2025 Notes

Work Energy and Power Class 11 Physics Chapter 5 CBSE Notes - 2025-26

Find the frictional force between the two blocks in class 11 physics JEE_MAIN

A pilot in a plane wants to go 500km towards the north class 11 physics JEE_Main

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models
