The electric potential at a point is $V=-5x+3y+\sqrt{15}z$ .Find the magnitude of the electric field intensity.
Answer
Verified
477.9k+ views
Hint: The electric field at a point is defined as the gradient of the electric potential at that point. The variation of potential at any point in the space is given as $V=-5x+3y+\sqrt{15}z$. Hence by taking the gradient of the above electric potential we will be able to determine the electric field at that point.
Formula used:
$\begin{align}
& Gradient(V)=\overline{\nabla }.V \\
& E=\overline{\nabla }.V=-\left( \dfrac{\delta V}{\delta x}+\dfrac{\delta V}{\delta y}+\dfrac{\delta V}{\delta z} \right) \\
\end{align}$
Complete answer:
The potential due to some charge configuration is given by $V=-5x+3y+\sqrt{15}z$. From this expression we can conclude that the charge distribution has its influence along the entire space i.e. it has components along all the axes. For a point in space having a particular value of potential the electric field is defined as the negative gradient of electric potential. This can be mathematically represented as,
$E=\overline{\nabla }.V=-\left( \dfrac{\delta V}{\delta x}+\dfrac{\delta V}{\delta y}+\dfrac{\delta V}{\delta z} \right)$
Substituting for the potential at appoint due to the charge distribution in the above equation we get,
$\begin{align}
& E=-\left( \dfrac{\delta V}{\delta x}+\dfrac{\delta V}{\delta y}+\dfrac{\delta V}{\delta z} \right) \\
& E=-\left( \dfrac{\delta (-5x+3y+\sqrt{15}z)}{\delta x}+\dfrac{\delta (-5x+3y+\sqrt{15}z)}{\delta y}+\dfrac{\delta (-5x+3y+\sqrt{15}z)}{\delta z} \right) \\
\end{align}$
Since the derivative of a function with respect to it running variable is non zero, the above equation becomes,
$\begin{align}
& E=-\left( \dfrac{\delta (-5x+3y+\sqrt{15}z)}{\delta x}+\dfrac{\delta (-5x+3y+\sqrt{15}z)}{\delta y}+\dfrac{\delta (-5x+3y+\sqrt{15}z)}{\delta z} \right) \\
& \Rightarrow E=-\left( \dfrac{-\delta 5x}{\delta x}+\dfrac{\delta 3y}{\delta x}+\dfrac{\delta \sqrt{15}z}{\delta x}+\dfrac{-\delta 5x}{\delta y}+\dfrac{\delta 3y}{\delta y}+\dfrac{\delta \sqrt{15}z}{\delta y}+\dfrac{-\delta 5x}{\delta z}+\dfrac{\delta 3y}{\delta z}+\dfrac{\delta \sqrt{15}z}{\delta z} \right) \\
& \Rightarrow E=-\left( \dfrac{-5\delta x}{\delta x}+0+\dfrac{3\delta y}{\delta y}+\dfrac{\sqrt{15}\delta z}{\delta z} \right) \\
& \Rightarrow E=-\left( -5+3+\sqrt{15} \right) \\
& \Rightarrow E=5-3-\sqrt{15} \\
& \Rightarrow E=2-\sqrt{15} \\
\end{align}$
Therefore the electric field at a point in space of influence of the charge configuration is equal to $(2-\sqrt{15})NC$ .
Note:
If we analyze the above answer, i.e. the value of the electric field is negative. Hence we can conclude that the field is generated by some negative charge distribution. Hence we can say that the potential due to the system keeps on decreasing as we move towards the negative charge distribution. It is to be noted that the potential is always relative to the negative and the positive charge.
Formula used:
$\begin{align}
& Gradient(V)=\overline{\nabla }.V \\
& E=\overline{\nabla }.V=-\left( \dfrac{\delta V}{\delta x}+\dfrac{\delta V}{\delta y}+\dfrac{\delta V}{\delta z} \right) \\
\end{align}$
Complete answer:
The potential due to some charge configuration is given by $V=-5x+3y+\sqrt{15}z$. From this expression we can conclude that the charge distribution has its influence along the entire space i.e. it has components along all the axes. For a point in space having a particular value of potential the electric field is defined as the negative gradient of electric potential. This can be mathematically represented as,
$E=\overline{\nabla }.V=-\left( \dfrac{\delta V}{\delta x}+\dfrac{\delta V}{\delta y}+\dfrac{\delta V}{\delta z} \right)$
Substituting for the potential at appoint due to the charge distribution in the above equation we get,
$\begin{align}
& E=-\left( \dfrac{\delta V}{\delta x}+\dfrac{\delta V}{\delta y}+\dfrac{\delta V}{\delta z} \right) \\
& E=-\left( \dfrac{\delta (-5x+3y+\sqrt{15}z)}{\delta x}+\dfrac{\delta (-5x+3y+\sqrt{15}z)}{\delta y}+\dfrac{\delta (-5x+3y+\sqrt{15}z)}{\delta z} \right) \\
\end{align}$
Since the derivative of a function with respect to it running variable is non zero, the above equation becomes,
$\begin{align}
& E=-\left( \dfrac{\delta (-5x+3y+\sqrt{15}z)}{\delta x}+\dfrac{\delta (-5x+3y+\sqrt{15}z)}{\delta y}+\dfrac{\delta (-5x+3y+\sqrt{15}z)}{\delta z} \right) \\
& \Rightarrow E=-\left( \dfrac{-\delta 5x}{\delta x}+\dfrac{\delta 3y}{\delta x}+\dfrac{\delta \sqrt{15}z}{\delta x}+\dfrac{-\delta 5x}{\delta y}+\dfrac{\delta 3y}{\delta y}+\dfrac{\delta \sqrt{15}z}{\delta y}+\dfrac{-\delta 5x}{\delta z}+\dfrac{\delta 3y}{\delta z}+\dfrac{\delta \sqrt{15}z}{\delta z} \right) \\
& \Rightarrow E=-\left( \dfrac{-5\delta x}{\delta x}+0+\dfrac{3\delta y}{\delta y}+\dfrac{\sqrt{15}\delta z}{\delta z} \right) \\
& \Rightarrow E=-\left( -5+3+\sqrt{15} \right) \\
& \Rightarrow E=5-3-\sqrt{15} \\
& \Rightarrow E=2-\sqrt{15} \\
\end{align}$
Therefore the electric field at a point in space of influence of the charge configuration is equal to $(2-\sqrt{15})NC$ .
Note:
If we analyze the above answer, i.e. the value of the electric field is negative. Hence we can conclude that the field is generated by some negative charge distribution. Hence we can say that the potential due to the system keeps on decreasing as we move towards the negative charge distribution. It is to be noted that the potential is always relative to the negative and the positive charge.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
How many valence electrons does nitrogen have class 11 chemistry CBSE