
The dimensional formula for inductance is:
A. $\left[ {{M^1}{L^2}{T^{ - 2}}{A^{ - 2}}} \right]$
B. $\left[ {{M^1}{L^2}T{A^{ - 2}}} \right]$
C. $\left[ {{M^1}{L^2}{T^{ - 1}}{A^{ - 2}}} \right]$
D. $\left[ {{M^1}{L^1}{T^{ - 2}}{A^{ - 2}}} \right]$
Answer
523.5k+ views
Hint: Inductance is defined as the ratio of Magnetic Flux to the current. For finding the dimensional formula of inductance we have many ways as it is directly linked with voltage and rate of change of current, energy and current etc.
Complete step by step answer:
We will use the basic way to find it as follow:
\[Inductance = \dfrac{{Magnetic{\text{ }}Flux}}{{Current}} - - - - - - - {\text{ }}\left( 1 \right)\]
Magnetic field = N=Magnetic field $ \times $ Area
Magnetic field = Force $/$ current $ \times $ Length............ (Since F = BIL)
Force = Mass $ \times $ Acceleration
Acceleration = Velocity $/$ Time
Velocity = Displacement $/$ Time
Now we will start solving all the from the bottom i.e. from the velocity
Displacement, Length = L , Time = T , Mass = M , Current = A
Velocity = Displacement $/$ Time
Velocity = \[\left[ {ML{T^{ - 1}}} \right]\]
Acceleration = $\dfrac{{{\text{velocity}}}}{{{\text{time}}}}$ = \[\dfrac{{[{M^0}L{T^{ - 1}}]}}{{\left[ T \right]}}\]
Acceleration = \[[{\text{ }}{{\text{M}}^0}L{T^{ - 2}}]\]
Force = Mass $ \times $ Acceleration = \[\left[ M \right] \times [{M^0}L{T^{ - 2}}]\]
Force = $\left[ {ML{T^{ - 2}}} \right]$
Magnetic field = Force $/$ (current $ \times $ Length) = \[\dfrac{{[ML{T^{ - 2}}]}}{{[A \times L]}}\]
Magnetic field = \[\left[ {M{L^0}{T^{ - 2}}{A^{ - 1}}} \right]\]
Magnetic Flux = Magnetic field $ \times $ Area = \[[M{L^0}{T^{ - 2}}{A^{ - 1}}] \times \left[ {{L^2}} \right]\] ........ (Since Area = L $ \times $ B = L2)
Magnetic Flux = \[\left[ {M{L^2}{T^{ - 2}}{A^{ - 1}}} \right]\]
Inductance = Magnetic Flux $/$ Current = \[\dfrac{{[M{L^2}{T^{ - 2}}{A^{ - 1}}]}}{{\left[ A \right]}}\]
Inductance = \[\left[ {M{L^2}{T^{ - 2}}{A^{ - 2}}} \right]\]
Hence the correct option is “A”.
Note:
In order to solve these types of problems first of all you must remember the formula of the quantity whose dimension you want to calculate and the dimensional formula of that quantity. There are many way to find dimensional formula for inductance One can find this by applying Faraday's law of electromagnetic induction as Inductance (L) = the ratio of potential difference to the time rate of change of electric current or in symbolic notation \[L\].
Complete step by step answer:
We will use the basic way to find it as follow:
\[Inductance = \dfrac{{Magnetic{\text{ }}Flux}}{{Current}} - - - - - - - {\text{ }}\left( 1 \right)\]
Magnetic field = N=Magnetic field $ \times $ Area
Magnetic field = Force $/$ current $ \times $ Length............ (Since F = BIL)
Force = Mass $ \times $ Acceleration
Acceleration = Velocity $/$ Time
Velocity = Displacement $/$ Time
Now we will start solving all the from the bottom i.e. from the velocity
Displacement, Length = L , Time = T , Mass = M , Current = A
Velocity = Displacement $/$ Time
Velocity = \[\left[ {ML{T^{ - 1}}} \right]\]
Acceleration = $\dfrac{{{\text{velocity}}}}{{{\text{time}}}}$ = \[\dfrac{{[{M^0}L{T^{ - 1}}]}}{{\left[ T \right]}}\]
Acceleration = \[[{\text{ }}{{\text{M}}^0}L{T^{ - 2}}]\]
Force = Mass $ \times $ Acceleration = \[\left[ M \right] \times [{M^0}L{T^{ - 2}}]\]
Force = $\left[ {ML{T^{ - 2}}} \right]$
Magnetic field = Force $/$ (current $ \times $ Length) = \[\dfrac{{[ML{T^{ - 2}}]}}{{[A \times L]}}\]
Magnetic field = \[\left[ {M{L^0}{T^{ - 2}}{A^{ - 1}}} \right]\]
Magnetic Flux = Magnetic field $ \times $ Area = \[[M{L^0}{T^{ - 2}}{A^{ - 1}}] \times \left[ {{L^2}} \right]\] ........ (Since Area = L $ \times $ B = L2)
Magnetic Flux = \[\left[ {M{L^2}{T^{ - 2}}{A^{ - 1}}} \right]\]
Inductance = Magnetic Flux $/$ Current = \[\dfrac{{[M{L^2}{T^{ - 2}}{A^{ - 1}}]}}{{\left[ A \right]}}\]
Inductance = \[\left[ {M{L^2}{T^{ - 2}}{A^{ - 2}}} \right]\]
Hence the correct option is “A”.
Note:
In order to solve these types of problems first of all you must remember the formula of the quantity whose dimension you want to calculate and the dimensional formula of that quantity. There are many way to find dimensional formula for inductance One can find this by applying Faraday's law of electromagnetic induction as Inductance (L) = the ratio of potential difference to the time rate of change of electric current or in symbolic notation \[L\].
Recently Updated Pages
Power set of empty set has exactly subset class 11 maths CBSE

While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Sanjeevani booti brought about by Lord Hanuman to cure class 11 biology CBSE

A police jeep on patrol duty on a national highway class 11 physics CBSE

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Whales are warmblooded animals which live in cold seas class 11 biology CBSE
