
The dimension of coefficient of viscosity.
A. $\left[ MLT \right]$
B. \[\left[ M{{L}^{-1}}{{T}^{-1}} \right]\]
C. \[\left[ ML{{T}^{-1}} \right]\]
D. \[\left[ ML{{T}^{-2}} \right]\]
Answer
492.3k+ views
Hint: To write dimensional formula for any quantity we need formula for that. Then we write formulas in basic terms like mass , time, length etc.
We can define coefficient of viscosity with following formula as below:
\[\eta =\dfrac{\tan gential\,force\,\times \,dis\tan ce\,\,between\,layers}{area\,of\,layer\times \,velocity}\]
Where \[\eta \] is coefficient of viscosity.
Complete step-by-step answer:
We generally define coefficient of viscosity as resistance which a fluid can exerts against a flow caused by applied force.
Formula of coefficient of viscosity is
\[\eta =\dfrac{\tan gential\,force\,\times \,dis\tan ce\,\,between\,layers}{area\,of\,layer\times \,velocity}\]
Now we can write dimensional formulas for each quantity.
Dimensional formula for force is $\left[ ML{{T}^{-2}} \right]$ because $F=ma$
Dimensional formula for distance is $\left[ L \right]$
Dimensional formula for the area of the layer is $\left[ {{L}^{2}} \right]$ because the area is generally defined as a centimeter square.
Dimensional formula for velocity is $\left[ L{{T}^{-1}} \right]$ because velocity is defined as ratio of distance and time.
Now we can find dimensional formula for coefficient of viscosity is
\[\Rightarrow \eta =\dfrac{\left[ ML{{T}^{-2}} \right]\,\times \,\left[ L \right]}{\left[ {{L}^{2}} \right]\times \,\left[ L{{T}^{-1}} \right]}\]
\[\Rightarrow \eta =\dfrac{\left[ M{{L}^{2}}{{T}^{-2}} \right]\,}{\,\left[ {{L}^{3}}{{T}^{-1}} \right]}\]
\[\Rightarrow \eta =\left[ M{{L}^{2-3}}{{T}^{-2+1}} \right]\]
\[\Rightarrow \eta =\left[ M{{L}^{-1}}{{T}^{-1}} \right]\]
Hence option B is correct.
Note: To simplify dimensional formulas we can apply multiplication and division properties of exponent.
According to the multiplication property of exponent if we have exponent terms of same base in multiplication then we can add their exponent. We can write it as below:
${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$
According to the division property of exponent if we have exponent terms of the same base in division then we can subtract their exponent. We can write it as below:
${{a}^{m}}\div {{a}^{n}}={{a}^{m-n}}$
We can define coefficient of viscosity with following formula as below:
\[\eta =\dfrac{\tan gential\,force\,\times \,dis\tan ce\,\,between\,layers}{area\,of\,layer\times \,velocity}\]
Where \[\eta \] is coefficient of viscosity.
Complete step-by-step answer:
We generally define coefficient of viscosity as resistance which a fluid can exerts against a flow caused by applied force.
Formula of coefficient of viscosity is
\[\eta =\dfrac{\tan gential\,force\,\times \,dis\tan ce\,\,between\,layers}{area\,of\,layer\times \,velocity}\]
Now we can write dimensional formulas for each quantity.
Dimensional formula for force is $\left[ ML{{T}^{-2}} \right]$ because $F=ma$
Dimensional formula for distance is $\left[ L \right]$
Dimensional formula for the area of the layer is $\left[ {{L}^{2}} \right]$ because the area is generally defined as a centimeter square.
Dimensional formula for velocity is $\left[ L{{T}^{-1}} \right]$ because velocity is defined as ratio of distance and time.
Now we can find dimensional formula for coefficient of viscosity is
\[\Rightarrow \eta =\dfrac{\left[ ML{{T}^{-2}} \right]\,\times \,\left[ L \right]}{\left[ {{L}^{2}} \right]\times \,\left[ L{{T}^{-1}} \right]}\]
\[\Rightarrow \eta =\dfrac{\left[ M{{L}^{2}}{{T}^{-2}} \right]\,}{\,\left[ {{L}^{3}}{{T}^{-1}} \right]}\]
\[\Rightarrow \eta =\left[ M{{L}^{2-3}}{{T}^{-2+1}} \right]\]
\[\Rightarrow \eta =\left[ M{{L}^{-1}}{{T}^{-1}} \right]\]
Hence option B is correct.
Note: To simplify dimensional formulas we can apply multiplication and division properties of exponent.
According to the multiplication property of exponent if we have exponent terms of same base in multiplication then we can add their exponent. We can write it as below:
${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$
According to the division property of exponent if we have exponent terms of the same base in division then we can subtract their exponent. We can write it as below:
${{a}^{m}}\div {{a}^{n}}={{a}^{m-n}}$
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
According to Bernoullis equation the expression which class 11 physics CBSE

Simon Commission came to India in A 1927 B 1928 C 1929 class 11 social science CBSE

What are the elders in Goa nostalgic about class 11 social science CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

Name the chemical used in black and white photogra class 11 chemistry CBSE

Explain Markovnikovs and AntiMarkovnikovs rule using class 11 chemistry CBSE
