Answer
Verified
438.9k+ views
Hint:The above problem is resolved by using the kinematic equation of motion. Moreover, the first kinematic equation of motion is used to resolve the problem. In the first kinematic equation of motion, the variables like the magnitude of initial velocity, the time interval, and the magnitude of acceleration can be identified by analysing the velocity-time graph. And by analysing this graph, the values are obtained. After obtaining the values, the substitution is made for the values to the mathematical equation of motion, and then the final answer is obtained.
Complete step by step answer:
Given:
The velocity at \[t = 0\] is, \[u = 2\;{\rm{m/s}}\].
The time interval is, \[t = 2\;{\rm{s}}\].
In order to find the velocity after 2 seconds, We need to find the area of the graph.
As, base represents the time and height represents the magnitude of acceleration \[a = 4\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}\].
Then the area of the acceleration time graph is,
\[
v = 2 \times \left( {\dfrac{1}{2} \times t \times a} \right)\\
\Rightarrow v = 2 \times \left( {\dfrac{1}{2} \times 2\;{\rm{s}} \times 4\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\\
\therefore v = 8\;{\rm{m/s}}
\]
Therefore, the velocity after 2 seconds is \[8\;{\rm{m/s}}\] and option (D) is correct.
Note: To resolve the given problem, the concepts and applications of the kinematic equations of motion need to be taken under consideration and the various practical applications of the equations. While applying the kinematic equations of motion, one must always remember the increase or decrease of the variables' values. This is important because the sign conventions are decided by the increment and decrement of these variables' magnitude.
Complete step by step answer:
Given:
The velocity at \[t = 0\] is, \[u = 2\;{\rm{m/s}}\].
The time interval is, \[t = 2\;{\rm{s}}\].
In order to find the velocity after 2 seconds, We need to find the area of the graph.
As, base represents the time and height represents the magnitude of acceleration \[a = 4\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}\].
Then the area of the acceleration time graph is,
\[
v = 2 \times \left( {\dfrac{1}{2} \times t \times a} \right)\\
\Rightarrow v = 2 \times \left( {\dfrac{1}{2} \times 2\;{\rm{s}} \times 4\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\\
\therefore v = 8\;{\rm{m/s}}
\]
Therefore, the velocity after 2 seconds is \[8\;{\rm{m/s}}\] and option (D) is correct.
Note: To resolve the given problem, the concepts and applications of the kinematic equations of motion need to be taken under consideration and the various practical applications of the equations. While applying the kinematic equations of motion, one must always remember the increase or decrease of the variables' values. This is important because the sign conventions are decided by the increment and decrement of these variables' magnitude.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Write the difference between order and molecularity class 11 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What are noble gases Why are they also called inert class 11 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between calcination and roasting class 11 chemistry CBSE