
Spin angular momentum for electron is given by:
A) $\sqrt {S\left( {S + 1} \right)} \dfrac{h}{{2\pi }}$
B) $\sqrt {2S\left( {S + 1} \right)} \dfrac{h}{{2\pi }}$
C) $\sqrt {S\left( {S + 2} \right)} \dfrac{h}{{2\pi }}$
D) None
Answer
501.9k+ views
Hint: The spin of an electron is a dimensionless quantity. The spin of an electron is described as the spin quantum number. All the particles that are moving in three directions possess integer spin or half integer spin.
Complete step by step answer:We know that spin of an electron is an intrinsic form of angular momentum carried by elementary particles. The spin of an electron is not associated with rotating internal parts of the elementary particles.
We know that an electron is believed to be a point particle that possesses no internal structure but still the electron possesses spin. A spin quantum number is assigned to the elementary particles that have the same spin angular momentum.
The direction of the spin of the electron can be changed but the electron cannot be made to spin faster or slower.
We know that the spin quantum number $\left( S \right)$ describes the angular momentum of an electron. An electron spins around an axis and possesses both angular momentum and orbital angular momentum. Thus, the spin quantum number has both direction $\left( { + {\text{ or }} - } \right)$ and magnitude $\left( {{\text{1/2}}} \right)$.
According to the definition of spin quantum number,
$S = \dfrac{n}{2}$
Where $S$ is the spin quantum number,
$n$ is the non-negative integer value.
Thus, the allowed values of spin are $0,\dfrac{1}{2},1,\dfrac{3}{2},......$Thus, the spin is quantised and has only discrete values.
The spin angular momentum of an electron is given as,
$S = h\sqrt {S\left( {S + 1} \right)} $
But $h = \dfrac{h}{{2\pi }}$. Thus,
$S = \dfrac{h}{{2\pi }}\sqrt {S\left( {S + 1} \right)} $
Thus, spin angular momentum for the electron is given by $\sqrt {S\left( {S + 1} \right)} \dfrac{h}{{2\pi }}$.
Thus, the correct option is (A) $\sqrt {S\left( {S + 1} \right)} \dfrac{h}{{2\pi }}$.
Note: The spin angular momentum of an electron can also be represented as $S = \dfrac{h}{{2\pi }}\sqrt {n\left( {n + 2} \right)} $. A particle having $S = \dfrac{h}{2}$ deflects upwards and a particle having $S = - \dfrac{h}{2}$ deflects downwards. The deflection in the upward and the downward direction is the same.
Complete step by step answer:We know that spin of an electron is an intrinsic form of angular momentum carried by elementary particles. The spin of an electron is not associated with rotating internal parts of the elementary particles.
We know that an electron is believed to be a point particle that possesses no internal structure but still the electron possesses spin. A spin quantum number is assigned to the elementary particles that have the same spin angular momentum.
The direction of the spin of the electron can be changed but the electron cannot be made to spin faster or slower.
We know that the spin quantum number $\left( S \right)$ describes the angular momentum of an electron. An electron spins around an axis and possesses both angular momentum and orbital angular momentum. Thus, the spin quantum number has both direction $\left( { + {\text{ or }} - } \right)$ and magnitude $\left( {{\text{1/2}}} \right)$.
According to the definition of spin quantum number,
$S = \dfrac{n}{2}$
Where $S$ is the spin quantum number,
$n$ is the non-negative integer value.
Thus, the allowed values of spin are $0,\dfrac{1}{2},1,\dfrac{3}{2},......$Thus, the spin is quantised and has only discrete values.
The spin angular momentum of an electron is given as,
$S = h\sqrt {S\left( {S + 1} \right)} $
But $h = \dfrac{h}{{2\pi }}$. Thus,
$S = \dfrac{h}{{2\pi }}\sqrt {S\left( {S + 1} \right)} $
Thus, spin angular momentum for the electron is given by $\sqrt {S\left( {S + 1} \right)} \dfrac{h}{{2\pi }}$.
Thus, the correct option is (A) $\sqrt {S\left( {S + 1} \right)} \dfrac{h}{{2\pi }}$.
Note: The spin angular momentum of an electron can also be represented as $S = \dfrac{h}{{2\pi }}\sqrt {n\left( {n + 2} \right)} $. A particle having $S = \dfrac{h}{2}$ deflects upwards and a particle having $S = - \dfrac{h}{2}$ deflects downwards. The deflection in the upward and the downward direction is the same.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

At which age domestication of animals started A Neolithic class 11 social science CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE
