Answer
Verified
100.5k+ views
Hint: Work energy theorem gives the relation between work done and energy. According to the work energy theorem, the net work done on a body is equal to the change in the kinetic energy of the body.
Complete step by step solution:
Suppose an object is having a mass ‘m’. Initially the object is moving with a velocity \[{v_1}\] and its final velocity is \[{v_2}\].
Therefore the initial kinetic energy of the object will be \[{K_1} = \dfrac{1}{2}mv_1^2\].
The final kinetic energy of the object will be \[{K_2} = \dfrac{1}{2}mv_2^2\].
Given that a constant force is acting on the object, so using Newton’s second law of motion, it can be written that
F=m.a……(i)
Where ‘F’ is the force, ‘m’ is the mass and ‘a’ is the acceleration
Also work done is defined as the product of force applied and the displacement. Mathematically, work done is written as
W=F.d……(ii)
It is known that the acceleration is the rate of change of velocity of the object. If the velocity of the object is changing and the object covers a displacement ‘d’, then using the equation of motion we can write that
\[v_2^2 - v_1^2 = 2ad\]
\[\Rightarrow a = \dfrac{{v_2^2 - v_1^2}}{{2d}}\]
Substituting the value of acceleration in equation (i) and solving, we get
\[F = m.\dfrac{{v_2^2 - v_1^2}}{{2d}}\]
\[\Rightarrow F.d = \dfrac{1}{2}m(v_2^2 - v_1^2)\]
Using equation (ii), in the above equation we get
\[W = \dfrac{1}{2}m(v_2^2 - v_1^2)\]
\[\Rightarrow W = \Delta K.E.\]
Where ‘W’ is the work done and \[\Delta K.E.\] is the kinetic energy.
Hence Proved
Note: It is important to remember that work energy is used to find out the work done by a number of forces on a solid object if it is moving under the influence of a number of forces. Work energy theorem is scalar as it does not define the direction of velocity in which the object is moving.
Complete step by step solution:
Suppose an object is having a mass ‘m’. Initially the object is moving with a velocity \[{v_1}\] and its final velocity is \[{v_2}\].
Therefore the initial kinetic energy of the object will be \[{K_1} = \dfrac{1}{2}mv_1^2\].
The final kinetic energy of the object will be \[{K_2} = \dfrac{1}{2}mv_2^2\].
Given that a constant force is acting on the object, so using Newton’s second law of motion, it can be written that
F=m.a……(i)
Where ‘F’ is the force, ‘m’ is the mass and ‘a’ is the acceleration
Also work done is defined as the product of force applied and the displacement. Mathematically, work done is written as
W=F.d……(ii)
It is known that the acceleration is the rate of change of velocity of the object. If the velocity of the object is changing and the object covers a displacement ‘d’, then using the equation of motion we can write that
\[v_2^2 - v_1^2 = 2ad\]
\[\Rightarrow a = \dfrac{{v_2^2 - v_1^2}}{{2d}}\]
Substituting the value of acceleration in equation (i) and solving, we get
\[F = m.\dfrac{{v_2^2 - v_1^2}}{{2d}}\]
\[\Rightarrow F.d = \dfrac{1}{2}m(v_2^2 - v_1^2)\]
Using equation (ii), in the above equation we get
\[W = \dfrac{1}{2}m(v_2^2 - v_1^2)\]
\[\Rightarrow W = \Delta K.E.\]
Where ‘W’ is the work done and \[\Delta K.E.\] is the kinetic energy.
Hence Proved
Note: It is important to remember that work energy is used to find out the work done by a number of forces on a solid object if it is moving under the influence of a number of forces. Work energy theorem is scalar as it does not define the direction of velocity in which the object is moving.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main