Answer
Verified
459.6k+ views
Hint: Certain properties of matter can only explain particle nature of matter. Similarly, certain properties of radiation can only explain wave nature. However, there are certain properties that can explain the dual nature of the particles and waves.
Complete answer:
Particle nature and wave nature of electromagnetic waves and electrons is called dual nature or wave particle dualism. According to this wave particle dualism, a wave can also exhibit particle behaviour and at the same time, a particle can also exhibit wave nature.
A vibration or disturbance describes the wave. The wave energy is either stationary or it is continuously moving. We can assign a frequency to the wave, so as to distinguish it from the particle.
We can characterize the particle by its mass, shape and physical dimensions.
Similar to a wave, a particle is either stationary or it is continuously moving. But unlike waves, we are sure about the position of the particle in space.
We cannot assign a frequency to the particle.
Particle nature and wave nature of electromagnetic waves and electrons can be represented by photo-electricity and electron microscopy. Photoelectricity illustrates the particle nature of waves. A photon is a wave particle. Electron microscopy represents the wave behaviour of a particle.
Hence, the correct option is the option (A).
Note: According to the de−Broglie hypothesis, the following equation gives the relationship between the wavelength and momentum of a moving particle.
\[\lambda = \dfrac{h}{p}\]
Here \[\lambda \] represents the wavelength, h represents the Planck’s constant and p represents the momentum of the moving particle.
Complete answer:
Particle nature and wave nature of electromagnetic waves and electrons is called dual nature or wave particle dualism. According to this wave particle dualism, a wave can also exhibit particle behaviour and at the same time, a particle can also exhibit wave nature.
A vibration or disturbance describes the wave. The wave energy is either stationary or it is continuously moving. We can assign a frequency to the wave, so as to distinguish it from the particle.
We can characterize the particle by its mass, shape and physical dimensions.
Similar to a wave, a particle is either stationary or it is continuously moving. But unlike waves, we are sure about the position of the particle in space.
We cannot assign a frequency to the particle.
Particle nature and wave nature of electromagnetic waves and electrons can be represented by photo-electricity and electron microscopy. Photoelectricity illustrates the particle nature of waves. A photon is a wave particle. Electron microscopy represents the wave behaviour of a particle.
Hence, the correct option is the option (A).
Note: According to the de−Broglie hypothesis, the following equation gives the relationship between the wavelength and momentum of a moving particle.
\[\lambda = \dfrac{h}{p}\]
Here \[\lambda \] represents the wavelength, h represents the Planck’s constant and p represents the momentum of the moving particle.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
10 examples of friction in our daily life
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE