
Newton’s second law of motion gives a measurement of:
A. Inertia
B. Momentum
C. Force
D. Acceleration
Answer
513k+ views
Hint: According to Newton’s second law of motion the rate of change of linear momentum of a body is directly proportional to the external force applied on the body in the direction of applied force. Using this relation, we need to derive the equation of motion of a body.
Complete step by step answer:
Let us take a body of mass m and velocity v.
The linear momentum of the body would be:
$\overrightarrow{p}=m\overrightarrow{v}$
The rate of change of linear momentum with respect to time would be:
$\dfrac{d\overrightarrow{p}}{dt}$
According to the second law:
$\overrightarrow{F}\propto \dfrac{d\overrightarrow{p}}{dt}$
$\overrightarrow{F}=k\dfrac{d\overrightarrow{p}}{dt}$
$\overrightarrow{F}=k\dfrac{d(m\overrightarrow{v})}{dt}$
$\overrightarrow{F}=km\dfrac{d(\overrightarrow{v})}{dt}$
$\overrightarrow{F}=km\overrightarrow{a}$
Taking a proportionality constant k=1
$\overrightarrow{F}=m\overrightarrow{a}$
This equation represents the equation of motion of a body of mass m and acceleration a. The direction of force and acceleration is the same. Here mass is a scalar quantity and acceleration is a vector quantity the product of a scalar and a vector gives a vector.
Thus, magnitude of force can be calculated by taking the product of mass and acceleration of the body. Hence the second law of motion gives us the measure of force and acceleration.
The correct answer is option C. Force. and option D. acceleration.
Note: Students should not get confused with inertia and momentum since the first law is the law of inertia and in the second law Force has a direct proportionality with rate of change of momentum and not just momentum.
Complete step by step answer:
Let us take a body of mass m and velocity v.
The linear momentum of the body would be:
$\overrightarrow{p}=m\overrightarrow{v}$
The rate of change of linear momentum with respect to time would be:
$\dfrac{d\overrightarrow{p}}{dt}$
According to the second law:
$\overrightarrow{F}\propto \dfrac{d\overrightarrow{p}}{dt}$
$\overrightarrow{F}=k\dfrac{d\overrightarrow{p}}{dt}$
$\overrightarrow{F}=k\dfrac{d(m\overrightarrow{v})}{dt}$
$\overrightarrow{F}=km\dfrac{d(\overrightarrow{v})}{dt}$
$\overrightarrow{F}=km\overrightarrow{a}$
Taking a proportionality constant k=1
$\overrightarrow{F}=m\overrightarrow{a}$
This equation represents the equation of motion of a body of mass m and acceleration a. The direction of force and acceleration is the same. Here mass is a scalar quantity and acceleration is a vector quantity the product of a scalar and a vector gives a vector.
Thus, magnitude of force can be calculated by taking the product of mass and acceleration of the body. Hence the second law of motion gives us the measure of force and acceleration.
The correct answer is option C. Force. and option D. acceleration.
Note: Students should not get confused with inertia and momentum since the first law is the law of inertia and in the second law Force has a direct proportionality with rate of change of momentum and not just momentum.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Write the following in Roman numerals 25819 class 7 maths CBSE

Trending doubts
What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

In northern hemisphere 21st March is called as A Vernal class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

List out the uses of ethanoic acid class 11 chemistry CBSE

Number of oneone functions from A to B where nA 4 and class 11 maths CBSE
