
Keeping dissimilar poles of two magnets of equal pole strength and length same side, their time period will be
A. One second
B. Zero
C. Infinity
D. Any values
Answer
174k+ views
Hint:We cannot just add the individual time periods of the two bar magnets since they are connected. The combined resultant system's time period must be determined. For this, we'll think of the system's moment of inertia and magnetic moment as being equal to the sum of its two moments of inertia and two moments of magnetic moment (if polarity is the same).
Formula used:
The time period of vibration magnetometer is,
$T = 2\pi \sqrt {\dfrac{I}{{mB}}} $
Where $I = $moment of inertia about the axis of rotation
$m = $Magnetic moment of magnet
$B = $Earth’s magnetic field
Complete step by step solution:
A bar magnet will rotate and attempt to align itself with the magnetic field when it is placed in a uniform magnetic field because of the force acting in the field's direction. Due to the rotational inertia caused by the torque, the magnet will rotate and attempt to align with the field, causing the bar magnet to move in a straightforward harmonic manner.
The torque acting on a bar magnet and rotational inertia are the basic operating principles of a vibration magnetometer. The time period of vibration magnetometer is given by,
$T = 2\pi \sqrt {\dfrac{I}{{mB}}} $
Keeping the opposite poles of two magnets with equivalent pole strengths and lengths. In this position we can say that,
$T = 2\pi \sqrt {\dfrac{{{I_1}}}{{({m_1} - {m_2})B}}} $
Since the pole strength is same, we can say that ${m_1} = {m_2}$
Putting the value, we get $T = \infty $
Hence option C is correct.
Note: On a rough note, it might be claimed that the time period of the resulting system will rise if one of the poles of a combined system of two magnets is flipped while maintaining all other parameters constant. We add the magnetic pole if the other poles remain similar.
Formula used:
The time period of vibration magnetometer is,
$T = 2\pi \sqrt {\dfrac{I}{{mB}}} $
Where $I = $moment of inertia about the axis of rotation
$m = $Magnetic moment of magnet
$B = $Earth’s magnetic field
Complete step by step solution:
A bar magnet will rotate and attempt to align itself with the magnetic field when it is placed in a uniform magnetic field because of the force acting in the field's direction. Due to the rotational inertia caused by the torque, the magnet will rotate and attempt to align with the field, causing the bar magnet to move in a straightforward harmonic manner.
The torque acting on a bar magnet and rotational inertia are the basic operating principles of a vibration magnetometer. The time period of vibration magnetometer is given by,
$T = 2\pi \sqrt {\dfrac{I}{{mB}}} $
Keeping the opposite poles of two magnets with equivalent pole strengths and lengths. In this position we can say that,
$T = 2\pi \sqrt {\dfrac{{{I_1}}}{{({m_1} - {m_2})B}}} $
Since the pole strength is same, we can say that ${m_1} = {m_2}$
Putting the value, we get $T = \infty $
Hence option C is correct.
Note: On a rough note, it might be claimed that the time period of the resulting system will rise if one of the poles of a combined system of two magnets is flipped while maintaining all other parameters constant. We add the magnetic pole if the other poles remain similar.
Recently Updated Pages
JEE Main 2025-26 Atoms and Nuclei Mock Test: Free Practice Online

JEE Main 2025-26: Dual Nature of Matter and Radiation Mock Test

JEE Main 2025-26 Electronic Devices Mock Test – Free Practice

JEE Main Mock Test 2025-26: Experimental Skills Chapter Online Practice

JEE Main 2025-26 Current Electricity Mock Test: Free Practice Online

JEE Main 2025-26 Rotational Motion Mock Test – Free Practice Online

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Electric field due to uniformly charged sphere class 12 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Essential Derivations for CBSE Class 12 Physics: Stepwise & PDF Solutions

Electron Gain Enthalpy and Electron Affinity for JEE

What is Hybridisation in Chemistry?
