Answer
Verified
462.6k+ views
Hint: For this question we will find the value of escape velocity such that when the particle reaches infinity it has non-negative total energy(zero for the equivalency case). And then we will find the value of orbital velocity close to the surface of earth by balancing the gravitational force with the centripetal force. And then we will compare the two.
Formula used:
Kinetic energy: $\dfrac{m{{v}^{2}}}{2}$
Gravitational potential energy: $-\dfrac{GMm}{\operatorname{R}}$
Centripetal force: \[\dfrac{m{{v}^{2}}}{\operatorname{R}}\]
Gravitational force: \[\dfrac{GMm}{{{\operatorname{R}}^{2}}}\]
Complete step-by-step answer:
First, let us find the escape velocity from the surface of the earth. We will take the energy of the particle at the surface of the earth which will be the sum of gravitational potential energy (we will take reference at infinity) and its kinetic energy. This must be greater than zero because when the object reaches infinity it will have zero potential energy, but its total energy remains constant.
So, $\dfrac{m{{v}_{e}}^{2}}{2}-\dfrac{GMm}{{{\operatorname{R}}_{e}}}\ge 0$
Here M is the mass of the earth and m is the mass of the object. \[{{\operatorname{R}}_{e}}\] is the radius of the earth as we are taking the point of launch as the surface of the earth. At escape velocity the particle just reaches infinity so we will take the condition where energy is equal to zero. We will replace the value of g here.
$\begin{align}
& \dfrac{m{{v}_{e}}^{2}}{2}-\dfrac{GMm}{{{\operatorname{R}}_{e}}}=0 \\
& \dfrac{m{{v}_{e}}^{2}}{2}=\dfrac{GMm}{{{\operatorname{R}}_{e}}}=mg{{\operatorname{R}}_{e}}\Rightarrow {{v}_{e}}=\sqrt{2g{{\operatorname{R}}_{e}}} \\
\end{align}$
Now, let us find the orbital velocity of a satellite orbiting close to the surface of earth. We will take the radius of the motion of the satellite to be the same as that of earth in our calculations. We will equate the force of gravity and the centripetal force to find the orbital velocity
\[\begin{align}
& \dfrac{m{{v}_{o}}^{2}}{{{\operatorname{R}}_{e}}}=\dfrac{GMm}{{{\operatorname{R}}_{e}}^{2}}=mg \\
& {{v}_{o}}=\sqrt{g{{\operatorname{R}}_{e}}} \\
\end{align}\]
So, we get that ${{v}_{e}}$ is $\sqrt{2}$ times ${{v}_{o}}$.
So, the correct answer is “Option C”.
Note: Special care must be taken to avoid calculation mistakes. Also take care that when we take the reference as infinity for gravitational potential energy, the gravitational potential energy near the surface of earth will be negative as potential energy is always taken with a reference. The common formula of mgh will not be used as the potential energy is considered as zero at the surface in that case.
Formula used:
Kinetic energy: $\dfrac{m{{v}^{2}}}{2}$
Gravitational potential energy: $-\dfrac{GMm}{\operatorname{R}}$
Centripetal force: \[\dfrac{m{{v}^{2}}}{\operatorname{R}}\]
Gravitational force: \[\dfrac{GMm}{{{\operatorname{R}}^{2}}}\]
Complete step-by-step answer:
First, let us find the escape velocity from the surface of the earth. We will take the energy of the particle at the surface of the earth which will be the sum of gravitational potential energy (we will take reference at infinity) and its kinetic energy. This must be greater than zero because when the object reaches infinity it will have zero potential energy, but its total energy remains constant.
So, $\dfrac{m{{v}_{e}}^{2}}{2}-\dfrac{GMm}{{{\operatorname{R}}_{e}}}\ge 0$
Here M is the mass of the earth and m is the mass of the object. \[{{\operatorname{R}}_{e}}\] is the radius of the earth as we are taking the point of launch as the surface of the earth. At escape velocity the particle just reaches infinity so we will take the condition where energy is equal to zero. We will replace the value of g here.
$\begin{align}
& \dfrac{m{{v}_{e}}^{2}}{2}-\dfrac{GMm}{{{\operatorname{R}}_{e}}}=0 \\
& \dfrac{m{{v}_{e}}^{2}}{2}=\dfrac{GMm}{{{\operatorname{R}}_{e}}}=mg{{\operatorname{R}}_{e}}\Rightarrow {{v}_{e}}=\sqrt{2g{{\operatorname{R}}_{e}}} \\
\end{align}$
Now, let us find the orbital velocity of a satellite orbiting close to the surface of earth. We will take the radius of the motion of the satellite to be the same as that of earth in our calculations. We will equate the force of gravity and the centripetal force to find the orbital velocity
\[\begin{align}
& \dfrac{m{{v}_{o}}^{2}}{{{\operatorname{R}}_{e}}}=\dfrac{GMm}{{{\operatorname{R}}_{e}}^{2}}=mg \\
& {{v}_{o}}=\sqrt{g{{\operatorname{R}}_{e}}} \\
\end{align}\]
So, we get that ${{v}_{e}}$ is $\sqrt{2}$ times ${{v}_{o}}$.
So, the correct answer is “Option C”.
Note: Special care must be taken to avoid calculation mistakes. Also take care that when we take the reference as infinity for gravitational potential energy, the gravitational potential energy near the surface of earth will be negative as potential energy is always taken with a reference. The common formula of mgh will not be used as the potential energy is considered as zero at the surface in that case.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE