
If the distance between the earth and the sun were reduced to half its present value, then the number of days in one year would have been
A) \[65\]
B) \[129\]
C) \[183\]
D) \[730\]
Answer
127.2k+ views
Hint: The number of days in a year or as we commonly call it, one calendar year, is the number of days of the earth’s orbital period. So if we can find the change in the time which the earth takes to complete one revolution around the earth, we can find the new duration of a calendar year.
Complete step by step solution:
The laws explaining the orbiting of planets, asteroids and comets around are known as Kepler’s laws.
Kepler’s laws are a compilation of three laws which are as follows:
Every planet’s orbit is an ellipse with the sun at a focus
A line joining the sun and a planet sweeps out equal areas in equal times
The square of a planet’s orbital period is proportional to the cube of the semi-major axis of its orbit.
Since we are concerned with the orbital period of the earth, we will only deal with the third law.
Earth’s orbit has an eccentricity of less than \[0.02\]. Due to this fact, we can approximately consider the earth’s orbit to be circular. Reviewing the third law with this approximation, we can state that
\[{{T}^{2}}={{r}^{3}}\] where \[T\] is the period of revolution of the earth and \[r\] is the radius of the earth’s orbit.
Considering two cases, where the radius in the second case is half of the radius in the first case, we can say that
\[\dfrac{T_{1}^{2}}{T_{2}^{2}}=\dfrac{r_{1}^{3}}{r_{2}^{3}}\] where \[{{T}_{1}}\] and \[{{T}_{2}}\] are the time periods of revolution of the earth in the two corresponding cases.
Substituting the values in the above expression, we get
\[\begin{align}
& \dfrac{{{(365)}^{2}}}{T_{2}^{2}}=\dfrac{r_{1}^{3}}{{{(0.5{{r}_{1}})}^{3}}} \\
& \Rightarrow \dfrac{{{(365)}^{2}}}{T_{2}^{2}}={{(2)}^{3}} \\
& \Rightarrow T_{2}^{2}=\dfrac{{{(365)}^{2}}}{8} \\
& \Rightarrow {{T}_{2}}=\dfrac{365}{2\sqrt{2}}=129.06 \\
& \Rightarrow {{T}_{2}}\simeq 129 \\
\end{align}\]
Hence the new number of days in the year would be \[129\] . Thus the correct option is (B).
Note:Kepler’s laws are used to plot and time the positions of comets and asteroids as they orbit the sun, plot the orbit of moons or man-made space satellites and also used to plot a course to send a rocket into space. Kepler’s laws encapsulate the principle of conservation of angular momentum for planetary systems.
Complete step by step solution:
The laws explaining the orbiting of planets, asteroids and comets around are known as Kepler’s laws.
Kepler’s laws are a compilation of three laws which are as follows:
Every planet’s orbit is an ellipse with the sun at a focus
A line joining the sun and a planet sweeps out equal areas in equal times
The square of a planet’s orbital period is proportional to the cube of the semi-major axis of its orbit.
Since we are concerned with the orbital period of the earth, we will only deal with the third law.
Earth’s orbit has an eccentricity of less than \[0.02\]. Due to this fact, we can approximately consider the earth’s orbit to be circular. Reviewing the third law with this approximation, we can state that
\[{{T}^{2}}={{r}^{3}}\] where \[T\] is the period of revolution of the earth and \[r\] is the radius of the earth’s orbit.
Considering two cases, where the radius in the second case is half of the radius in the first case, we can say that
\[\dfrac{T_{1}^{2}}{T_{2}^{2}}=\dfrac{r_{1}^{3}}{r_{2}^{3}}\] where \[{{T}_{1}}\] and \[{{T}_{2}}\] are the time periods of revolution of the earth in the two corresponding cases.
Substituting the values in the above expression, we get
\[\begin{align}
& \dfrac{{{(365)}^{2}}}{T_{2}^{2}}=\dfrac{r_{1}^{3}}{{{(0.5{{r}_{1}})}^{3}}} \\
& \Rightarrow \dfrac{{{(365)}^{2}}}{T_{2}^{2}}={{(2)}^{3}} \\
& \Rightarrow T_{2}^{2}=\dfrac{{{(365)}^{2}}}{8} \\
& \Rightarrow {{T}_{2}}=\dfrac{365}{2\sqrt{2}}=129.06 \\
& \Rightarrow {{T}_{2}}\simeq 129 \\
\end{align}\]
Hence the new number of days in the year would be \[129\] . Thus the correct option is (B).
Note:Kepler’s laws are used to plot and time the positions of comets and asteroids as they orbit the sun, plot the orbit of moons or man-made space satellites and also used to plot a course to send a rocket into space. Kepler’s laws encapsulate the principle of conservation of angular momentum for planetary systems.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Course 2025: Get All the Relevant Details

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Oscillation Class 11 Notes: CBSE Physics Chapter 13

NCERT Solutions for Class 11 Physics Chapter 10 Thermal Properties of Matter

NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

NCERT Solutions for Class 11 Physics Chapter 14 Waves
