
How do you find the amplitude, period, and phase shift for $y = cos\left( {\theta + 180^\circ } \right)$?
Answer
485.7k+ views
Hint: In the question, we have to determine the amplitude, period, and phase-shift for the given trigonometric expression. To determine amplitude, period, and phase-shift, we first determine the amplitude for the given trigonometric expression. The standard form of the equation is $y = A\cos \left( {kx + \psi } \right)$. Where A is the amplitude, k is the number of waves and the value of k is equal to $\dfrac{{2\pi }}{\lambda }$ , $\lambda $ is the wavelength that is called the period and $ - \dfrac{\psi }{k}$ is the phase-shift.
Complete step-by-step answer:
First, we will determine the amplitude for the given trigonometric expression.
In this question, the given expression is:
$ \Rightarrow y = cos\left( {\theta + 180^\circ } \right)$
Let us compare the above equation with the standard form of equation $y = A\cos \left( {kx + \psi } \right)$.
By comparing the equation, we get the value of A is 1, the value of k is 1, and the value of $\psi $ is $180^\circ $.
$ \Rightarrow A = 1$
$ \Rightarrow k = 1$
And $ \Rightarrow \psi = 180^\circ $.
Hence, the value of the amplitude A is 1.
As we know that $k = \dfrac{{2\pi }}{\lambda }$
Therefore,
$ \Rightarrow \lambda = \dfrac{{2\pi }}{k}$
Here, the value of k is 1.
$ \Rightarrow \lambda = \dfrac{{2\pi }}{1}$
That is equal to,
$ \Rightarrow \lambda = 2\pi $
Hence, the period $\lambda $is $2\pi $.
Now, we know the formula of phase -shift is $ - \dfrac{\psi }{k}$.
Put the value of $\psi = 180^\circ $ and $k = 1$.
Therefore,
$ \Rightarrow - \dfrac{{180^\circ }}{1}$
That is equal to,
$ \Rightarrow - 180^\circ $
Hence, the value of the amplitude is 1, the value of period is $2\pi $, and the value of phase-shift is $ - 180^\circ $.
Note:
By comparing the given expression with the standard form, we can get the value of amplitude and the value of k. To obtain the value of the period, we have to put the value of k in the formula of the period that is $\lambda = \dfrac{{2\pi }}{k}$. We can also get the value of phase-shift by putting the value of k and $\psi $ in the formula of phase-shift that is $ - \dfrac{\psi }{k}$.
Complete step-by-step answer:
First, we will determine the amplitude for the given trigonometric expression.
In this question, the given expression is:
$ \Rightarrow y = cos\left( {\theta + 180^\circ } \right)$
Let us compare the above equation with the standard form of equation $y = A\cos \left( {kx + \psi } \right)$.
By comparing the equation, we get the value of A is 1, the value of k is 1, and the value of $\psi $ is $180^\circ $.
$ \Rightarrow A = 1$
$ \Rightarrow k = 1$
And $ \Rightarrow \psi = 180^\circ $.
Hence, the value of the amplitude A is 1.
As we know that $k = \dfrac{{2\pi }}{\lambda }$
Therefore,
$ \Rightarrow \lambda = \dfrac{{2\pi }}{k}$
Here, the value of k is 1.
$ \Rightarrow \lambda = \dfrac{{2\pi }}{1}$
That is equal to,
$ \Rightarrow \lambda = 2\pi $
Hence, the period $\lambda $is $2\pi $.
Now, we know the formula of phase -shift is $ - \dfrac{\psi }{k}$.
Put the value of $\psi = 180^\circ $ and $k = 1$.
Therefore,
$ \Rightarrow - \dfrac{{180^\circ }}{1}$
That is equal to,
$ \Rightarrow - 180^\circ $
Hence, the value of the amplitude is 1, the value of period is $2\pi $, and the value of phase-shift is $ - 180^\circ $.
Note:
By comparing the given expression with the standard form, we can get the value of amplitude and the value of k. To obtain the value of the period, we have to put the value of k in the formula of the period that is $\lambda = \dfrac{{2\pi }}{k}$. We can also get the value of phase-shift by putting the value of k and $\psi $ in the formula of phase-shift that is $ - \dfrac{\psi }{k}$.
Recently Updated Pages
NCERT Solutions For Class 4 English Marigold (Poem) - Don’t Be Afraid Of The Dark

NCERT Solutions For Class 5 English Marigold (Poem) - Class Discussion

NCERT Solutions For Class 5 English Marigold - Gullivers Travels

NCERT Solutions For Class 5 Hindi Rimjhim - Bagh Aaya Uss Raat

NCERT Solutions For Class 8 Hindi Bharat Ki Khoj - Tanaav

NCERT Solutions For Class 12 Maths - Differential Equations

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE
