
Explain how differences in fluid pressure create buoyant force on an object.
Answer
526.8k+ views
Hint: The ability of a fluid – a liquid or a gas – to exert an upward force called the buoyant force on an object immersed in it is termed as buoyancy. A difference in pressure on the object results in the buoyant force.
Complete step by step answer:
A Greek mathematician named Archimedes made a discovery about buoyancy. According to the Archimedes principle, the buoyant force exerted on a body immersed in a fluid is equal to the weight of the fluid displaced by the body. For example, if you place a block of wood in water, it will push water out of the way as it begins to sink – but only until the weight of the water displaced equals the block’s weight. When the weight of water displaced – the buoyant force – becomes equal to the weight of the block, it floats. When an object is immersed in water, the pressure exerted by water horizontally on its sides, cancel out each other. Since, pressure increases with depth, the pressure exerted by water at the bottom of the object is greater than the pressure exerted by water at the top of the object. A difference in pressure creates a force called the buoyant force.
Additional Information:
Buoyant force is obtained by subtracting weight of an object immersed in fluid from the weight of an object in empty space. The answer will be in Newton.
Note:
Buoyant force acts on all sides of an object and not just the bottom. However, as pressure increases with depth, the upward push is greater than the downward push making the net buoyant force upwards.
Complete step by step answer:
A Greek mathematician named Archimedes made a discovery about buoyancy. According to the Archimedes principle, the buoyant force exerted on a body immersed in a fluid is equal to the weight of the fluid displaced by the body. For example, if you place a block of wood in water, it will push water out of the way as it begins to sink – but only until the weight of the water displaced equals the block’s weight. When the weight of water displaced – the buoyant force – becomes equal to the weight of the block, it floats. When an object is immersed in water, the pressure exerted by water horizontally on its sides, cancel out each other. Since, pressure increases with depth, the pressure exerted by water at the bottom of the object is greater than the pressure exerted by water at the top of the object. A difference in pressure creates a force called the buoyant force.
Additional Information:
Buoyant force is obtained by subtracting weight of an object immersed in fluid from the weight of an object in empty space. The answer will be in Newton.
Note:
Buoyant force acts on all sides of an object and not just the bottom. However, as pressure increases with depth, the upward push is greater than the downward push making the net buoyant force upwards.
Recently Updated Pages
Physics and Measurement Mock Test 2025 – Practice Questions & Answers

NCERT Solutions For Class 5 English Marigold - The Little Bully

NCERT Solutions For Class 12 Maths Three Dimensional Geometry Exercise 11.1

NCERT Solutions For Class 11 English Woven Words (Poem) - Ajamil And The Tigers

NCERT Solutions For Class 6 Hindi Durva - Bhaaloo

NCERT Solutions For Class 12 Physics In Hindi - Wave Optics

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE
